Binary search tree: remove
General Information
Algorithmic Problem: Sorted sequence:remove
Type of algorithm: loop
Auxiliary data: A pointer [math]\displaystyle{ p }[/math] of type "pointer to binary search tree node of type [math]\displaystyle{ \mathcal{K} }[/math]."
Abstract view
Invariant After [math]\displaystyle{ i \geq 0 }[/math] interations:
- The pointer [math]\displaystyle{ p }[/math] points to a tree node [math]\displaystyle{ v }[/math] on height level [math]\displaystyle{ i }[/math].
- The key [math]\displaystyle{ K }[/math] is in range of [math]\displaystyle{ p }[/math], but [math]\displaystyle{ p.key \neq K }[/math].
Variant: [math]\displaystyle{ i }[/math] increased by [math]\displaystyle{ 1 }[/math].
Break Condition: One of the following two conditions is fulfilled:
- It is [math]\displaystyle{ K \lt p }[/math].key and either [math]\displaystyle{ p }[/math].left = void or [math]\displaystyle{ p }[/math].left.key [math]\displaystyle{ = K }[/math].
- It is [math]\displaystyle{ K \gt p }[/math].key and either [math]\displaystyle{ p }[/math].right = void or [math]\displaystyle{ p }[/math].right.key = [math]\displaystyle{ K }[/math].
Remark: For example, the height of the subtree rooted at the node to which [math]\displaystyle{ p }[/math] points may be chosen as the induction parameter. For conciseness, the induction parameter is omitted in the following.
Induction basis
Abstract view:
- If the root contains [math]\displaystyle{ K }[/math], remove this occurrence of [math]\displaystyle{ K }[/math].
- Otherwise, initialize [math]\displaystyle{ p }[/math] so as to point to the root.
Implementation:
- If root.key [math]\displaystyle{ = K }[/math]:
- If root.left = void, set root := root.right.
- Otherwise, if root.right = void, set root := root.left.
- Otherwise, call method remove node with pointer root.
- Terminate the algorithm and return true.
- Otherwise set [math]\displaystyle{ p := }[/math] root.
Proof: Obvious.
Induction step
Abstract View:
- If the next node where to go does not exist or contains [math]\displaystyle{ K }[/math], terminate the algorithm (and in the latter case, remove that node appropriately).
- Otherwise, descend to that node.
Implementation:
- If [math]\displaystyle{ K \lt p }[/math].key:
- If [math]\displaystyle{ p }[/math].left = void, terminate the algorithm and return false.
- Otherwise if [math]\displaystyle{ p }[/math].left.key [math]\displaystyle{ = K }[/math]:
- If [math]\displaystyle{ p }[/math].left.left = void, set [math]\displaystyle{ p }[/math].left := p.left.right.
- Otherwise, if [math]\displaystyle{ p }[/math].left.right = void, set [math]\displaystyle{ p }[/math].left := p.left.left.
- Otherwise, call method remove node with pointer [math]\displaystyle{ p }[/math].left.
- Terminate the algorithm and return true.
- Otherwise (that is, [math]\displaystyle{ p }[/math].left [math]\displaystyle{ \neq }[/math] void and [math]\displaystyle{ p }[/math].left.key [math]\displaystyle{ \neq K }[/math]), set [math]\displaystyle{ p := p }[/math].left.
- Otherwise (that is, [math]\displaystyle{ K \gt p }[/math].key):
- If [math]\displaystyle{ p }[/math].right = void, terminate the algorithm and return false.
- Otherwise, if [math]\displaystyle{ p }[/math].right.key [math]\displaystyle{ = K }[/math]:
- If [math]\displaystyle{ p }[/math].right.left = void, set [math]\displaystyle{ p }[/math].right [math]\displaystyle{ =p }[/math].right.right.
- Otherwise, if [math]\displaystyle{ p }[/math].right.right = void, set [math]\displaystyle{ p }[/math].right [math]\displaystyle{ = p }[/math].right.left.
- Otherwise, call method remove node with pointer [math]\displaystyle{ p }[/math].right.
- Terminate the algorithm and return true.
- Otherwise (that is, [math]\displaystyle{ p }[/math].right [math]\displaystyle{ \neq }[/math] void and [math]\displaystyle{ p }[/math].right.key [math]\displaystyle{ \neq K }[/math]), set [math]\displaystyle{ p:= p }[/math].right.
Correctness: Nothing to show.
Pseudocode
TREE-DELETE(T,z)
- if left[z] = NULL or right[z] = NULL
- then y = z
- else y = TREE-SUCCESSOR(z)
- if left[y] ≠ NULL
- then x = left[y]
- else x = right[y]
- if x ≠ NULL
- then p[x] = p [y]
- if p[y] = NULL
- then root[T] = x
- else if y = left[p[y]]
- then left[p[y]] = x
- else right[p[y]] = x
- if y ≠ z
- then key[z] = key[y]
- copy y's satellite data into z
- then key[z] = key[y]
- return y
Complexity
Statement: The complexity is in [math]\displaystyle{ \mathcal{O}(T\cdot h)\subseteq\mathcal{O}(T\cdot n) }[/math] in the worst case, where [math]\displaystyle{ n }[/math] is the length of the sequence, [math]\displaystyle{ h }[/math] the height of the tree, and [math]\displaystyle{ T }[/math] the complexity of the comparison.
Proof: Obvious.