Basic flow definitions: Difference between revisions
Jump to navigation
Jump to search
(Created page with "# Residual network # Flow-augmenting path # Preflow # Pseudoflow # Valid distance labeling") |
No edit summary |
||
Line 1: | Line 1: | ||
== Residual network == | |||
Let <math>G=(V,A)</math be a directed graph , <math>\ell(a)</math> and <math>u(a)</math> and <math>f(a)\in[\ell(a)\ldots u(a)]</math> | |||
== Flow-augmenting path == | |||
Let <math>G=(V,A)</math be a directed graph , <math>\ell(a)</math> and <math>u(a)</math> and <math>f(a)\in[\ell(a)\ldots u(a)]</math> | |||
== Preflow == | |||
== Pseudoflow == | |||
== Valid distance labeling == |
Revision as of 17:01, 12 October 2014
Residual network
Let [math]\displaystyle{ G=(V,A)\lt /math be a directed graph , \lt math\gt \ell(a) }[/math] and [math]\displaystyle{ u(a) }[/math] and [math]\displaystyle{ f(a)\in[\ell(a)\ldots u(a)] }[/math]
Flow-augmenting path
Let [math]\displaystyle{ G=(V,A)\lt /math be a directed graph , \lt math\gt \ell(a) }[/math] and [math]\displaystyle{ u(a) }[/math] and [math]\displaystyle{ f(a)\in[\ell(a)\ldots u(a)] }[/math]