Basic flow definitions: Difference between revisions
Line 3: | Line 3: | ||
Let <math>G=(V,A)</math> be a directed graph. Without loss of generality, we assume <math>(v,w)\in A</math> if, and only if, <math>(w,v)\in A</math>. For <math>a\in A</math>, there are real values <math>u(a)</math> and <math>f(a)</math> such that <math>0\leq f(a)\leq u(a)</math>. | Let <math>G=(V,A)</math> be a directed graph. Without loss of generality, we assume <math>(v,w)\in A</math> if, and only if, <math>(w,v)\in A</math>. For <math>a\in A</math>, there are real values <math>u(a)</math> and <math>f(a)</math> such that <math>0\leq f(a)\leq u(a)</math>. | ||
The '''residual network''' of <math>(G,u)</math> with respect to <math>f</math> is the pair <math>(G',u_f)</math>, where <math>u_f</math> defined by <math>u_f(v,w):=u(v,w)-f(v,w)+f(w,v)</math> for all <math>(v,w)\in A</math>. The value <math>u_f(a)</math> is called the '''residual capacity''' of <math>a\in A</math> with respect to <math>f</math>. The graph <math>G'</math> consists of all nodes of <math>G</math> and, specifically, of all arcs of <math>G</math> with positive residual capacities. | The '''residual network''' of <math>(G,u)</math> with respect to <math>f</math> is the pair <math>(G',u_f)</math>, where <math>u_f</math> defined by <math>u_f(v,w):=u(v,w)-f(v,w)+f(w,v)</math> for all <math>(v,w)\in A'</math>. The value <math>u_f(a)</math> is called the '''residual capacity''' of <math>a\in A</math> with respect to <math>f</math>. The graph <math>G'</math> consists of all nodes of <math>G</math> and, specifically, of all arcs of <math>G</math> with positive residual capacities. | ||
Therefore, the residual capacity of an arc <math>(v,w)\in A</math> is the amount by which the net flow from <math>v</math> could be changed within the capacity constraints just by changes of the flow values of <math>(v,w)</math> and <math>(w,v)</math>. | Therefore, the residual capacity of an arc <math>(v,w)\in A</math> is the amount by which the net flow from <math>v</math> could be changed within the capacity constraints just by changes of the flow values of <math>(v,w)</math> and <math>(w,v)</math>. |
Revision as of 11:10, 13 October 2014
Residual network
Let [math]\displaystyle{ G=(V,A) }[/math] be a directed graph. Without loss of generality, we assume [math]\displaystyle{ (v,w)\in A }[/math] if, and only if, [math]\displaystyle{ (w,v)\in A }[/math]. For [math]\displaystyle{ a\in A }[/math], there are real values [math]\displaystyle{ u(a) }[/math] and [math]\displaystyle{ f(a) }[/math] such that [math]\displaystyle{ 0\leq f(a)\leq u(a) }[/math].
The residual network of [math]\displaystyle{ (G,u) }[/math] with respect to [math]\displaystyle{ f }[/math] is the pair [math]\displaystyle{ (G',u_f) }[/math], where [math]\displaystyle{ u_f }[/math] defined by [math]\displaystyle{ u_f(v,w):=u(v,w)-f(v,w)+f(w,v) }[/math] for all [math]\displaystyle{ (v,w)\in A' }[/math]. The value [math]\displaystyle{ u_f(a) }[/math] is called the residual capacity of [math]\displaystyle{ a\in A }[/math] with respect to [math]\displaystyle{ f }[/math]. The graph [math]\displaystyle{ G' }[/math] consists of all nodes of [math]\displaystyle{ G }[/math] and, specifically, of all arcs of [math]\displaystyle{ G }[/math] with positive residual capacities.
Therefore, the residual capacity of an arc [math]\displaystyle{ (v,w)\in A }[/math] is the amount by which the net flow from [math]\displaystyle{ v }[/math] could be changed within the capacity constraints just by changes of the flow values of [math]\displaystyle{ (v,w) }[/math] and [math]\displaystyle{ (w,v) }[/math].
Flow-augmenting path
Let [math]\displaystyle{ G=(V,A) }[/math] be a directed graph. Without loss of generality, we assume [math]\displaystyle{ (v,w)\in A }[/math] if, and only if, [math]\displaystyle{ (w,v)\in A }[/math]. For [math]\displaystyle{ a\in A }[/math], there are real values [math]\displaystyle{ u(a) }[/math] and [math]\displaystyle{ f(a) }[/math] such that [math]\displaystyle{ 0\leq f(a)\leq u(a) }[/math].
A flow-augmenting path from some node [math]\displaystyle{ s\in V }[/math] to some node [math]\displaystyle{ t\in V }[/math] is a path from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] that may contain arcs in forward and backward, subject to:
- [math]\displaystyle{ f(a)\lt u(a) }[/math] if [math]\displaystyle{ a\in A }[/math] is a forward arc;
- [math]\displaystyle{ f(a)\gt 0 }[/math] if [math]\displaystyle{ a\in A }[/math] is a backward arc.
In the residual network of [math]\displaystyle{ (G,u) }[/math] with respect to [math]\displaystyle{ f }[/math], backward arcs need not be considered for flow-augmenting path.
Preflow
Preflows generalize ordinary flows as follows: Instead of an equation, the following inequality is to be fulfilled:
- [math]\displaystyle{ \sum_{w:(v,w)\in A}f(v,w)\leq\sum_{w:(w,v)\in A}f(w,v) }[/math].
The excess of [math]\displaystyle{ v\in V }[/math] is the difference between the right-hand side and the left-hand side of that inequality.
Pseudoflow
Valid distance labeling
Definition:
- Let [math]\displaystyle{ G=(V,A)) }[/math] be a directed graph, and for each arc [math]\displaystyle{ a\in A }[/math] let [math]\displaystyle{ u(a) }[/math] and [math]\displaystyle{ f(a) }[/math] be defined such that [math]\displaystyle{ 0\leq f(a)\leq u(a) }[/math]. An assignment of a value [math]\displaystyle{ d(v) }[/math] to each node [math]\displaystyle{ v\in V }[/math] is a valid distance labeling if the following two conditions ar fulfilled:
- It is [math]\displaystyle{ d(t)=0 }[/math].
- For each arc [math]\displaystyle{ (v,w)\in A }[/math] in the residual network, it is [math]\displaystyle{ d(v)\leq d(w)+1 }[/math].
- If even [math]\displaystyle{ d(v)=d(w)+1 }[/math], <math>(v,w)</mah> is called an admissible arc.