Successive shortest paths: Difference between revisions
Jump to navigation
Jump to search
Line 10: | Line 10: | ||
# The capacity constraints are fulfilled, that is, <math>0\leq f(a)\leq u(a)</math> for all <math>a\in A</math>. | # The capacity constraints are fulfilled, that is, <math>0\leq f(a)\leq u(a)</math> for all <math>a\in A</math>. | ||
# There is no negative cycle in the [[Basic flow definitions#Residual network|residual network]] of <math>f</math>. | # There is no negative cycle in the [[Basic flow definitions#Residual network|residual network]] of <math>f</math>. | ||
# The imbalance of | # The imbalance of every node is underestimating. | ||
'''Variant:''' | '''Variant:''' |
Revision as of 10:34, 23 October 2014
Abstract view
Definition:
- For a node [math]\displaystyle{ v\in V }[/math], let [math]\displaystyle{ \Delta f(v):=\sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v) }[/math].
- The imbalance of a node [math]\displaystyle{ v\in V }[/math] is defined as [math]\displaystyle{ \Delta f(v)-b(v) }[/math].
- The imbalance of a node [math]\displaystyle{ v\in V }[/math] is underestimating if [math]\displaystyle{ 0\leq \Delta f(v)\leq b(v) }[/math] or [math]\displaystyle{ 0\geq\Delta f(v)\geq b(v) }[/math].
- The total imbalance of [math]\displaystyle{ f }[/math] is the defined as [math]\displaystyle{ \sum_{v\in V}|\Delta f(v)-b(v)| }[/math].
Invariant:
- The capacity constraints are fulfilled, that is, [math]\displaystyle{ 0\leq f(a)\leq u(a) }[/math] for all [math]\displaystyle{ a\in A }[/math].
- There is no negative cycle in the residual network of [math]\displaystyle{ f }[/math].
- The imbalance of every node is underestimating.
Variant: The total imbalance strictly decreases.
Induction basis
Abstract view: Start with the zero flow.
Proof: Obvious.
Induction step
- If there