Basics of shortest paths: Difference between revisions
Line 47: | Line 47: | ||
First consider the case that <math>d_\ell(w)=d_\ell(v)+\ell(v,w)</math>. Then the concatenation of the shortest path from <math>s</math> to <math>v</math> and <math>(v,w)</math> has length <math>d_\ell(w)</math> and is thus shortest. | First consider the case that <math>d_\ell(w)=d_\ell(v)+\ell(v,w)</math>. Then the concatenation of the shortest path from <math>s</math> to <math>v</math> and <math>(v,w)</math> has length <math>d_\ell(w)</math> and is thus shortest. | ||
So, consider the case that <math>d_\ell(w) | So, consider the case that <math>d_\ell(w)\neq d_\ell(v)+\ell(v,w)</math>. Due to the valid distance property, it is then <math>d_\ell(w)<d_\ell(v)+\ell(v,w)</math>. Suppose for a contradiction that some shortest <math>(s,w)</math>-path is of the form <math>p+(v,w)</math>. Then <math>p</math> would have length <math>d_\ell(w)-\ell(v,w)<d_\ell(v)</math>, which contradicts the definition of <math>d_\ell()</math>. | ||
== Reconstruction of a shortest paths == | == Reconstruction of a shortest paths == |
Revision as of 14:54, 12 November 2014
Path lengths and distances
Let [math]\displaystyle{ G=(V,A) }[/math] be a simple directed graph and for each arc [math]\displaystyle{ a\in A }[/math] let [math]\displaystyle{ \ell(a) }[/math] be a real number, the length of [math]\displaystyle{ a }[/math].
- The length of an ordinary path (incl. ordinary cycles) is the sum of the lengths of all arcs on this path.
- Depending on the context, the length of a generalized path (incl. generalized cycles) is either defined identically to ordinary paths or, alternatively, the lengths of the backward arcs are not added but subtracted.
- If the length of an ordinary or generalized cycle is negative, this cycle is called a negative cycle.
- For two nodes, [math]\displaystyle{ s,t\in V }[/math]:
- A shortest path from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] is an [math]\displaystyle{ (s,t) }[/math]-path with minimum length among all [math]\displaystyle{ (s,t) }[/math]-paths.
- The distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] is the length of a shortest [math]\displaystyle{ (s,t) }[/math]-path.
Remarks:
- In this context, undirected graphs are usually regarded as symmetric directed graphs such that two opposite arcs have the same length.
- If there are no negative cycles, the distances from a node to itself is zero because the trivial path with no arcs has length zero.
Subpath property of shortest paths
Statement: For [math]\displaystyle{ s,t\in V }[/math] let [math]\displaystyle{ p }[/math] be a shortest [math]\displaystyle{ (s,t) }[/math]-path. Let [math]\displaystyle{ v,w\in V }[/math] be two nodes on [math]\displaystyle{ p }[/math] such that [math]\displaystyle{ v }[/math] precedes [math]\displaystyle{ w }[/math] on [math]\displaystyle{ p }[/math]. Then the subpath of [math]\displaystyle{ p }[/math] from [math]\displaystyle{ v }[/math] to [math]\displaystyle{ w }[/math] is a shortest [math]\displaystyle{ (v,w) }[/math]-path.
Proof: Let [math]\displaystyle{ p_1 }[/math], [math]\displaystyle{ p_2 }[/math] and [math]\displaystyle{ p_3 }[/math] denote the subpaths of [math]\displaystyle{ p }[/math] from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ v }[/math], from [math]\displaystyle{ v }[/math] to [math]\displaystyle{ w }[/math], and from [math]\displaystyle{ w }[/math] to [math]\displaystyle{ t }[/math], respectively. Suppose for a contradiction that some [math]\displaystyle{ (v,w) }[/math]-path [math]\displaystyle{ p'_2 }[/math] is shorter than [math]\displaystyle{ p_2 }[/math]. Then the concatenation [math]\displaystyle{ p_1+p'_2+p_3 }[/math] would be a shorter [math]\displaystyle{ (s,t) }[/math]-path than [math]\displaystyle{ p }[/math].
Remark: Usually, only subpaths at the beginning of a shortest path are considered. That restricted version is called the prefix property.
Valid distance property
Let [math]\displaystyle{ s\in V }[/math] and for each node [math]\displaystyle{ u\in V }[/math] let [math]\displaystyle{ d_\ell(u) }[/math] denote the distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ u }[/math] with respect to the arc lengths [math]\displaystyle{ \ell }[/math].
Statement: For [math]\displaystyle{ (v,w)\in A }[/math], it is [math]\displaystyle{ d_\ell(w)\leq d_\ell(v)+\ell(v,w) }[/math].
Proof: The left-hand side of the inequality is the length of a shortest [math]\displaystyle{ (s,w) }[/math]-path, whereas the right-hand side is the length of some [math]\displaystyle{ (s,w) }[/math]-path (viz. the concatenation of a shortest [math]\displaystyle{ (s,v) }[/math]-path and [math]\displaystyle{ (v,w) }[/math]).
Remark: Node labels [math]\displaystyle{ d }[/math] that fulfill the valid distance property need not be distances.
Distances along shortest paths
Let [math]\displaystyle{ s\in V }[/math] and for each node [math]\displaystyle{ u\in V }[/math] let [math]\displaystyle{ d_\ell(u) }[/math] denote the distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ u }[/math] with respect to the arc lengths [math]\displaystyle{ \ell }[/math].
Statement: For an arc [math]\displaystyle{ (v,w) }[/math], it is [math]\displaystyle{ d_\ell(w)=d_\ell(v)+\ell(v,w) }[/math] if, and only if, [math]\displaystyle{ (v,w) }[/math] is the last arc of some shortest [math]\displaystyle{ (s,w) }[/math]-path.
Proof: First consider the case that [math]\displaystyle{ d_\ell(w)=d_\ell(v)+\ell(v,w) }[/math]. Then the concatenation of the shortest path from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ v }[/math] and [math]\displaystyle{ (v,w) }[/math] has length [math]\displaystyle{ d_\ell(w) }[/math] and is thus shortest.
So, consider the case that [math]\displaystyle{ d_\ell(w)\neq d_\ell(v)+\ell(v,w) }[/math]. Due to the valid distance property, it is then [math]\displaystyle{ d_\ell(w)\lt d_\ell(v)+\ell(v,w) }[/math]. Suppose for a contradiction that some shortest [math]\displaystyle{ (s,w) }[/math]-path is of the form [math]\displaystyle{ p+(v,w) }[/math]. Then [math]\displaystyle{ p }[/math] would have length [math]\displaystyle{ d_\ell(w)-\ell(v,w)\lt d_\ell(v) }[/math], which contradicts the definition of [math]\displaystyle{ d_\ell() }[/math].
Reconstruction of a shortest paths
From distances: Suppose that for each node [math]\displaystyle{ v\in V }[/math] the distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ v }[/math] is given. For [math]\displaystyle{ t\in V }[/math], a shortest [math]\displaystyle{ (s,t) }[/math]-path [math]\displaystyle{ p }[/math] can be constructed as follows:
- Initialize [math]\displaystyle{ p }[/math] to be empty.
- Set [math]\displaystyle{ w:=t }[/math].
- While [math]\displaystyle{ w\neq s }[/math]:
- Find an arc [math]\displaystyle{ (v,w) }[/math] such that [math]\displaystyle{ d_\ell(w)=d_\ell(v)+\ell(v,w) }[/math].
- Append [math]\displaystyle{ (v,w) }[/math] at the beginning of [math]\displaystyle{ p }[/math].