Cardinality-maximal matching: Difference between revisions

From Algowiki
Jump to navigation Jump to search
(Created page with "== Basic definitions == # Basic graph definitions # Matchings in graphs == Definition == '''Input:''' An undirected graph <math>G=(V,E)</math>. '''Output:''' A mat...")
 
Line 24: Line 24:
Clearly, if <math>M</math> admits an augmenting path, <math>M</math> is not cardinality-maximal. So consider the case that <math>M</math> is not cardinality-maximal. We have to show that <math>M</math> admits an augmenting path.
Clearly, if <math>M</math> admits an augmenting path, <math>M</math> is not cardinality-maximal. So consider the case that <math>M</math> is not cardinality-maximal. We have to show that <math>M</math> admits an augmenting path.


By assumption, there is a matching <math>M'</math> in <math>G</math> such that <math>|M'|>|M|</math>. The symmetric difference, <math>\Delta
By assumption, there is a matching <math>M'</math> in <math>G</math> such that <math>|M'|>|M|</math>. Let <math>\Delta:=(M\setminus M'\cup(M'\setminus M)</math> denote the symmetric difference of <math>M</math> and <math>M'</math>. Obviously, any node <math>v\in V</math> is incident to at most two edges in <math>\Delta</math>. Consequently, <math>\Delta</math> decomposes into [[Basic graph definitions#Paths|node-disjoint paths]] (some of them may be [[Basic graph definitions#Cycles|cycles]]). These paths  are [[Matchings in graphs#Definitions|alternating]]. Since <math>|M'|>|M|</math>, at least one of these paths must be [[Matchings in graphs#Definitions|augmenting]]

Revision as of 10:13, 21 November 2014

Basic definitions

  1. Basic graph definitions
  2. Matchings in graphs

Definition

Input: An undirected graph [math]\displaystyle{ G=(V,E) }[/math].

Output: A matching [math]\displaystyle{ M }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ |M'|\leq|M| }[/math] for any other matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math].

Known algorithms:

  1. Maximum matching by Edmonds
  2. Classical bipartite cardinality matching (bipartite graphs [math]\displaystyle{ G }[/math] only)

Berge's theorem

Statement: A matching [math]\displaystyle{ M }[/math] in an undirected graph [math]\displaystyle{ G=(V,E) }[/math] is cardinality-maximal if, and only if, [math]\displaystyle{ M }[/math] admits no augmenting path.

Proof: Clearly, if [math]\displaystyle{ M }[/math] admits an augmenting path, [math]\displaystyle{ M }[/math] is not cardinality-maximal. So consider the case that [math]\displaystyle{ M }[/math] is not cardinality-maximal. We have to show that [math]\displaystyle{ M }[/math] admits an augmenting path.

By assumption, there is a matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ |M'|\gt |M| }[/math]. Let [math]\displaystyle{ \Delta:=(M\setminus M'\cup(M'\setminus M) }[/math] denote the symmetric difference of [math]\displaystyle{ M }[/math] and [math]\displaystyle{ M' }[/math]. Obviously, any node [math]\displaystyle{ v\in V }[/math] is incident to at most two edges in [math]\displaystyle{ \Delta }[/math]. Consequently, [math]\displaystyle{ \Delta }[/math] decomposes into node-disjoint paths (some of them may be cycles). These paths are alternating. Since [math]\displaystyle{ |M'|\gt |M| }[/math], at least one of these paths must be augmenting