Hungarian method: Difference between revisions

From Algowiki
Jump to navigation Jump to search
Line 20: Line 20:


Initialize all <math>x</math> and <math>y</math> values such that the invariant is fulfilled, for example:
Initialize all <math>x</math> and <math>y</math> values such that the invariant is fulfilled, for example:
# <math>x(v):=\max\{c(\{v,w\})|w\in V_2\}</math> for all <math>v\in V</math>.
# <math>x(v):=\max\{c(\{v,w\})|w\in V_2\}</math> for all <math>v\in V_1</math>.
# <math>y(w):=0</math> for all <math>w\in V:2</math>,
# <math>y(w):=0</math> for all <math>w\in V:2</math>,


== Induction step ==
== Induction step ==

Revision as of 18:52, 22 November 2014

Abstract view

Algorithmic problem: Maximum-weight matching in [Basic graph definitions#Bipartite and k-partite graphs|bipartite graphs]] [math]\displaystyle{ G=(V_1\dot\cup V_2,E) }[/math].

Type of algorithm: loop.

Auxiliary data:

  1. A real number [math]\displaystyle{ x(v) }[/math] for each node [math]\displaystyle{ v\in V_1 }[/math].
  2. A real number [math]\displaystyle{ y(w) }[/math] for each node [math]\displaystyle{ w\in V_2 }[/math].

Invariant:

  1. For each edge [math]\displaystyle{ e=\{v,w\}\in E }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math], it is [math]\displaystyle{ c(e)\leq x(v)+y(w) }[/math].

Variant:

Break condition: For each edge [math]\displaystyle{ e=\{v,w\} in E }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math], it is [math]\displaystyle{ c(e)=x(v)+y(w) }[/math].

Induction basis

Initialize all [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] values such that the invariant is fulfilled, for example:

  1. [math]\displaystyle{ x(v):=\max\{c(\{v,w\})|w\in V_2\} }[/math] for all [math]\displaystyle{ v\in V_1 }[/math].
  2. [math]\displaystyle{ y(w):=0 }[/math] for all [math]\displaystyle{ w\in V:2 }[/math],

Induction step