Hungarian method: Difference between revisions
No edit summary |
|||
Line 10: | Line 10: | ||
'''Invariant:''' | '''Invariant:''' | ||
# For each edge <math>e=\{v,w\}\in | # <math>M</math> is a matching in <math>G</math>. | ||
# For each edge <math>e=\{v,w\}\in M</math>, where <math>v\in V_1</math> and <math>w\in V_2</math>, it is <math>c(e)\leq x(v)+y(w)</math>. | |||
'''Variant:''' | '''Variant:''' | ||
'''Break condition:''' | '''Break condition:''' | ||
For each edge <math>e=\{v,w\} in | For each edge <math>e=\{v,w\} in M</math>, where <math>v\in V_1</math> and <math>w\in V_2</math>, it is <math>c(e)=x(v)+y(w)</math>. | ||
== Induction basis == | == Induction basis == | ||
Line 24: | Line 25: | ||
== Induction step == | == Induction step == | ||
== Correctness == | |||
Termination of the main loop will follow from the complexity considerations below. Let <math>M</math> be a perfect matching and <math>x</math> and <math>y</math> be given such that <math>c(e)=x(v)+y(w)</math> for all <math>e=\{v,w\}\in M</math>, where <math>v\in V_1</math> and <math>w/in V_2</math>. Let <math>M'</math> be another matching. Due to the invariant, it is | |||
:<math>c(M)=\sum_{v\in V_1,w\in V_2\atop e=\{v,w\}\in M}c(e)=\sum_{v\in V_1}x(v)+\sum_{w\in V_2}y(w)\geq </math>. |
Revision as of 19:23, 22 November 2014
Abstract view
Algorithmic problem: Maximum-weight matching in [Basic graph definitions#Bipartite and k-partite graphs|bipartite graphs]] [math]\displaystyle{ G=(V_1\dot\cup V_2,E) }[/math].
Type of algorithm: loop.
Auxiliary data:
- A real number [math]\displaystyle{ x(v) }[/math] for each node [math]\displaystyle{ v\in V_1 }[/math].
- A real number [math]\displaystyle{ y(w) }[/math] for each node [math]\displaystyle{ w\in V_2 }[/math].
Invariant:
- [math]\displaystyle{ M }[/math] is a matching in [math]\displaystyle{ G }[/math].
- For each edge [math]\displaystyle{ e=\{v,w\}\in M }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math], it is [math]\displaystyle{ c(e)\leq x(v)+y(w) }[/math].
Variant:
Break condition: For each edge [math]\displaystyle{ e=\{v,w\} in M }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math], it is [math]\displaystyle{ c(e)=x(v)+y(w) }[/math].
Induction basis
Initialize all [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] values such that the invariant is fulfilled, for example:
- [math]\displaystyle{ x(v):=\max\{c(\{v,w\})|w\in V_2\} }[/math] for all [math]\displaystyle{ v\in V_1 }[/math].
- [math]\displaystyle{ y(w):=0 }[/math] for all [math]\displaystyle{ w\in V_2 }[/math],
Induction step
Correctness
Termination of the main loop will follow from the complexity considerations below. Let [math]\displaystyle{ M }[/math] be a perfect matching and [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] be given such that [math]\displaystyle{ c(e)=x(v)+y(w) }[/math] for all [math]\displaystyle{ e=\{v,w\}\in M }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w/in V_2 }[/math]. Let [math]\displaystyle{ M' }[/math] be another matching. Due to the invariant, it is
- [math]\displaystyle{ c(M)=\sum_{v\in V_1,w\in V_2\atop e=\{v,w\}\in M}c(e)=\sum_{v\in V_1}x(v)+\sum_{w\in V_2}y(w)\geq }[/math].