Hungarian method: Difference between revisions
Line 20: | Line 20: | ||
== Induction basis == | == Induction basis == | ||
Initialize all <math>x</math> and <math>y</math> values such that the invariant is fulfilled, for example: | # initialize <math>M</math> to be a feasible matching, fir example, the empty matching. | ||
# <math>x(v):=\max\{c(\{v,w\})|w\in V_2\}</math> for all <math>v\in V_1</math>. | # Initialize all <math>x</math> and <math>y</math> values such that the invariant is fulfilled, for example: | ||
# <math>y(w):=0</math> for all <math>w\in V_2</math>, | ## <math>x(v):=\max\{c(\{v,w\})|w\in V_2\}</math> for all <math>v\in V_1</math>. | ||
## <math>y(w):=0</math> for all <math>w\in V_2</math>, | |||
== Induction step == | == Induction step == |
Revision as of 19:47, 22 November 2014
Abstract view
Algorithmic problem: Maximum-weight matching in complete bipartite graphs [math]\displaystyle{ G=(V_1\dot\cup V_2,E) }[/math].
Type of algorithm: loop.
Auxiliary data:
- A real number [math]\displaystyle{ x(v) }[/math] for each node [math]\displaystyle{ v\in V_1 }[/math].
- A real number [math]\displaystyle{ y(w) }[/math] for each node [math]\displaystyle{ w\in V_2 }[/math].
Invariant:
- [math]\displaystyle{ M }[/math] is a matching in [math]\displaystyle{ G }[/math].
- For each edge [math]\displaystyle{ e=\{v,w\}\in M }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math], it is [math]\displaystyle{ c(e)\leq x(v)+y(w) }[/math].
Variant:
Break condition: For each edge [math]\displaystyle{ e=\{v,w\} in M }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math], it is [math]\displaystyle{ c(e)=x(v)+y(w) }[/math].
Induction basis
- initialize [math]\displaystyle{ M }[/math] to be a feasible matching, fir example, the empty matching.
- Initialize all [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] values such that the invariant is fulfilled, for example:
- [math]\displaystyle{ x(v):=\max\{c(\{v,w\})|w\in V_2\} }[/math] for all [math]\displaystyle{ v\in V_1 }[/math].
- [math]\displaystyle{ y(w):=0 }[/math] for all [math]\displaystyle{ w\in V_2 }[/math],
Induction step
Correctness
Termination of the main loop will follow from the complexity considerations below. Let [math]\displaystyle{ M }[/math] be a perfect matching and [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] be given such that [math]\displaystyle{ c(e)=x(v)+y(w) }[/math] for all [math]\displaystyle{ e=\{v,w\}\in M }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math]. Let [math]\displaystyle{ M' }[/math] be another matching. Due to the invariant, it is
- [math]\displaystyle{ c(M)=\sum_{v\in V_1,w\in V_2\atop e=\{v,w\}\in M}c(e)=\sum_{v\in V_1}x(v)+\sum_{w\in V_2}y(w)\geq\sum_{v\in V_1,w\in V_2\atop e=\{v,w\}\in M'}c(e) }[/math].
Therefore, [math]\displaystyle{ M }[/math] is maximal.
Remark: In particular, the following equivalence is proved: A perfect matching [math]\displaystyle{ M }[/math] has maximum weight if, and only if, there are [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] such that [math]\displaystyle{ c(e)=x(v)+y(w) }[/math] for all [math]\displaystyle{ e=\{v,w\}\in M }[/math].