Hungarian method: Difference between revisions

From Algowiki
Jump to navigation Jump to search
Line 1: Line 1:
== Abstract view ==
== Abstract view ==


'''Algorithmic problem:''' [[Maximum-weight matching]] in [[Basic graph definitions#Complete graphs|complete]] [[Basic graph definitions#Bipartite and k-partite graphs|bipartite]] graphs <math>G=(V_1\dot\cup V_2,E)</math>.
'''Algorithmic problem:''' [[Maximum-weight matching]] in [[Basic graph definitions#Complete graphs|complete]] [[Basic graph definitions#Bipartite and k-partite graphs|bipartite]] graphs <math>G=(V_1\dot\cup V_2,E)</math> with <math>|V_1|=|V_2|</math>.


'''Type of algorithm:''' loop.
'''Type of algorithm:''' loop.

Revision as of 19:52, 22 November 2014

Abstract view

Algorithmic problem: Maximum-weight matching in complete bipartite graphs [math]\displaystyle{ G=(V_1\dot\cup V_2,E) }[/math] with [math]\displaystyle{ |V_1|=|V_2| }[/math].

Type of algorithm: loop.

Auxiliary data:

  1. A real number [math]\displaystyle{ x(v) }[/math] for each node [math]\displaystyle{ v\in V_1 }[/math].
  2. A real number [math]\displaystyle{ y(w) }[/math] for each node [math]\displaystyle{ w\in V_2 }[/math].

Invariant:

  1. [math]\displaystyle{ M }[/math] is a matching in [math]\displaystyle{ G }[/math].
  2. For each edge [math]\displaystyle{ e=\{v,w\}\in M }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math], it is [math]\displaystyle{ c(e)\leq x(v)+y(w) }[/math].

Variant:

Break condition: For each edge [math]\displaystyle{ e=\{v,w\} in M }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math], it is [math]\displaystyle{ c(e)=x(v)+y(w) }[/math].

Induction basis

  1. initialize [math]\displaystyle{ M }[/math] to be a feasible matching, for example, the empty matching.
  2. Initialize all [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] values such that the invariant is fulfilled, for example:
    1. [math]\displaystyle{ x(v):=\max\{c(\{v,w\})|w\in V_2\} }[/math] for all [math]\displaystyle{ v\in V_1 }[/math].
    2. [math]\displaystyle{ y(w):=0 }[/math] for all [math]\displaystyle{ w\in V_2 }[/math],

Induction step

Abstract view:

  1. Let [math]\displaystyle{ G'=(V,E') }[/math] be the subgraph of [math]\displaystyle{ G }[/math]
  2. find an

Correctness

Termination of the main loop will follow from the complexity considerations below. Let [math]\displaystyle{ M }[/math] be a perfect matching and [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] be given such that [math]\displaystyle{ c(e)=x(v)+y(w) }[/math] for all [math]\displaystyle{ e=\{v,w\}\in M }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math]. Let [math]\displaystyle{ M' }[/math] be another matching. Due to the invariant, it is

[math]\displaystyle{ c(M)=\sum_{v\in V_1,w\in V_2\atop e=\{v,w\}\in M}c(e)=\sum_{v\in V_1}x(v)+\sum_{w\in V_2}y(w)\geq\sum_{v\in V_1,w\in V_2\atop e=\{v,w\}\in M'}c(e) }[/math].

Therefore, [math]\displaystyle{ M }[/math] is maximal.

Remark: In particular, the following equivalence is proved: A perfect matching [math]\displaystyle{ M }[/math] has maximum weight if, and only if, there are [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] such that [math]\displaystyle{ c(e)=x(v)+y(w) }[/math] for all [math]\displaystyle{ e=\{v,w\}\in M }[/math].