Hungarian method: Difference between revisions
Line 28: | Line 28: | ||
'''Abstract view:''' | '''Abstract view:''' | ||
# Let <math>G'=(V,E')</math> be the subgraph of <math>G</math> | # Let <math>G'=(V,E')</math> be the subgraph of <math>G</math> where <math>E'</math> comprises all edges <math>e=\{v,w\}\in E</math> (<math>v\in V_1</math>, <math>w\in V_2</math>) such that <math>c(e)=x(v)+y(w)</math>, | ||
# find an | # Try to find an [[Matchings in graphs#Alternating and augmenting paths|augmenting path]] in <math>G'</math> with respect to <math>M</math>.# | ||
# If step 2 succeeds, [[Matchings in graphs#Augmenting along a path|augment]] <math>M</math> along this path. | |||
# Otherwise: | |||
== Correctness == | == Correctness == |
Revision as of 07:15, 23 November 2014
Abstract view
Algorithmic problem: Maximum-weight matching in complete bipartite graphs [math]\displaystyle{ G=(V_1\dot\cup V_2,E) }[/math] with [math]\displaystyle{ |V_1|=|V_2| }[/math].
Type of algorithm: loop.
Auxiliary data:
- A real number [math]\displaystyle{ x(v) }[/math] for each node [math]\displaystyle{ v\in V_1 }[/math].
- A real number [math]\displaystyle{ y(w) }[/math] for each node [math]\displaystyle{ w\in V_2 }[/math].
Invariant:
- [math]\displaystyle{ M }[/math] is a matching in [math]\displaystyle{ G }[/math].
- For each edge [math]\displaystyle{ e=\{v,w\}\in M }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math], it is [math]\displaystyle{ c(e)\leq x(v)+y(w) }[/math].
Variant:
Break condition: For each edge [math]\displaystyle{ e=\{v,w\} in M }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math], it is [math]\displaystyle{ c(e)=x(v)+y(w) }[/math].
Induction basis
- initialize [math]\displaystyle{ M }[/math] to be a feasible matching, for example, the empty matching.
- Initialize all [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] values such that the invariant is fulfilled, for example:
- [math]\displaystyle{ x(v):=\max\{c(\{v,w\})|w\in V_2\} }[/math] for all [math]\displaystyle{ v\in V_1 }[/math].
- [math]\displaystyle{ y(w):=0 }[/math] for all [math]\displaystyle{ w\in V_2 }[/math],
Induction step
Abstract view:
- Let [math]\displaystyle{ G'=(V,E') }[/math] be the subgraph of [math]\displaystyle{ G }[/math] where [math]\displaystyle{ E' }[/math] comprises all edges [math]\displaystyle{ e=\{v,w\}\in E }[/math] ([math]\displaystyle{ v\in V_1 }[/math], [math]\displaystyle{ w\in V_2 }[/math]) such that [math]\displaystyle{ c(e)=x(v)+y(w) }[/math],
- Try to find an augmenting path in [math]\displaystyle{ G' }[/math] with respect to [math]\displaystyle{ M }[/math].#
- If step 2 succeeds, augment [math]\displaystyle{ M }[/math] along this path.
- Otherwise:
Correctness
Termination of the main loop will follow from the complexity considerations below. Let [math]\displaystyle{ M }[/math] be a perfect matching and [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] be given such that [math]\displaystyle{ c(e)=x(v)+y(w) }[/math] for all [math]\displaystyle{ e=\{v,w\}\in M }[/math], where [math]\displaystyle{ v\in V_1 }[/math] and [math]\displaystyle{ w\in V_2 }[/math]. Let [math]\displaystyle{ M' }[/math] be another matching. Due to the invariant, it is
- [math]\displaystyle{ c(M)=\sum_{v\in V_1,w\in V_2\atop e=\{v,w\}\in M}c(e)=\sum_{v\in V_1}x(v)+\sum_{w\in V_2}y(w)\geq\sum_{v\in V_1,w\in V_2\atop e=\{v,w\}\in M'}c(e) }[/math].
Therefore, [math]\displaystyle{ M }[/math] is maximal.
Remark: In particular, the following equivalence is proved: A perfect matching [math]\displaystyle{ M }[/math] has maximum weight if, and only if, there are [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] such that [math]\displaystyle{ c(e)=x(v)+y(w) }[/math] for all [math]\displaystyle{ e=\{v,w\}\in M }[/math].