Basics of shortest paths: Difference between revisions
Line 36: | Line 36: | ||
'''Remark:''' | '''Remark:''' | ||
Node labels <math>d</math> that fulfill the valid distance property need not be distances. | Node labels <math>d</math> that fulfill the valid distance property need not be distances. | ||
'''Standard distance update:''' | |||
In all common shortest-paths algorithms, an attribute <math>d_s(v)</math> is maintained for each <math>v\in V</math>. This attribute always holds the length of some <math>(s,v)</math>-path and should be the true distance from <math>s</math> to <math>v</math> on termination. In virtually all standard algorithms, the following update operation is the (only) operation to update <math>d</math>-values: | |||
# Choose some arc <math>(v,w)\in A</math>. | |||
# If <math>d_s(w)>d_s(v)+\ell(v,w)</math>, then set <math>d_s(w):=d_s(v)+\ell(v,w)</math>. | |||
Obviously, this operation maintains the valid distance property. | |||
== Distances along shortest paths == | == Distances along shortest paths == |
Revision as of 14:54, 1 December 2014
Path lengths and distances
Let [math]\displaystyle{ G=(V,A) }[/math] be a simple directed graph and for each arc [math]\displaystyle{ a\in A }[/math] let [math]\displaystyle{ \ell(a) }[/math] be a real number, the length of [math]\displaystyle{ a }[/math].
- The length of an ordinary path (incl. ordinary cycles) is the sum of the lengths of all arcs on this path.
- Depending on the context, the length of a generalized path (incl. generalized cycles) is either defined identically to ordinary paths or, alternatively, the lengths of the backward arcs are not added but subtracted.
- If the length of an ordinary or generalized cycle is negative, this cycle is called a negative cycle.
- For two nodes, [math]\displaystyle{ s,t\in V }[/math]:
- A shortest path from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] is an [math]\displaystyle{ (s,t) }[/math]-path with minimum length among all [math]\displaystyle{ (s,t) }[/math]-paths.
- The distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] is the length of a shortest [math]\displaystyle{ (s,t) }[/math]-path.
Remarks:
- In this context, undirected graphs are usually regarded as symmetric directed graphs such that two opposite arcs have the same length.
- If there are no negative cycles, the distances from a node to itself is zero because the trivial path with no arcs has length zero.
Subpath property of shortest paths
Statement: For [math]\displaystyle{ s,t\in V }[/math] let [math]\displaystyle{ p }[/math] be a shortest [math]\displaystyle{ (s,t) }[/math]-path. Let [math]\displaystyle{ v,w\in V }[/math] be two nodes on [math]\displaystyle{ p }[/math] such that [math]\displaystyle{ v }[/math] precedes [math]\displaystyle{ w }[/math] on [math]\displaystyle{ p }[/math]. Then the subpath of [math]\displaystyle{ p }[/math] from [math]\displaystyle{ v }[/math] to [math]\displaystyle{ w }[/math] is a shortest [math]\displaystyle{ (v,w) }[/math]-path.
Proof: Let [math]\displaystyle{ p_1 }[/math], [math]\displaystyle{ p_2 }[/math] and [math]\displaystyle{ p_3 }[/math] denote the subpaths of [math]\displaystyle{ p }[/math] from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ v }[/math], from [math]\displaystyle{ v }[/math] to [math]\displaystyle{ w }[/math], and from [math]\displaystyle{ w }[/math] to [math]\displaystyle{ t }[/math], respectively. Suppose for a contradiction that some [math]\displaystyle{ (v,w) }[/math]-path [math]\displaystyle{ p'_2 }[/math] is shorter than [math]\displaystyle{ p_2 }[/math]. Then the concatenation [math]\displaystyle{ p_1+p'_2+p_3 }[/math] would be a shorter [math]\displaystyle{ (s,t) }[/math]-path than [math]\displaystyle{ p }[/math].
Remark: Usually, only subpaths at the beginning of a shortest path are considered. That restricted version is called the prefix property.
Valid distance property
Let [math]\displaystyle{ s\in V }[/math] and for each node [math]\displaystyle{ u\in V }[/math] let [math]\displaystyle{ d_\ell(u) }[/math] denote the distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ u }[/math] with respect to the arc lengths [math]\displaystyle{ \ell }[/math].
Statement: For [math]\displaystyle{ (v,w)\in A }[/math], it is [math]\displaystyle{ d_\ell(w)\leq d_\ell(v)+\ell(v,w) }[/math].
Proof: The left-hand side of the inequality is the length of a shortest [math]\displaystyle{ (s,w) }[/math]-path, whereas the right-hand side is the length of some [math]\displaystyle{ (s,w) }[/math]-path (viz. the concatenation of a shortest [math]\displaystyle{ (s,v) }[/math]-path and [math]\displaystyle{ (v,w) }[/math]).
Remark: Node labels [math]\displaystyle{ d }[/math] that fulfill the valid distance property need not be distances.
Standard distance update: In all common shortest-paths algorithms, an attribute [math]\displaystyle{ d_s(v) }[/math] is maintained for each [math]\displaystyle{ v\in V }[/math]. This attribute always holds the length of some [math]\displaystyle{ (s,v) }[/math]-path and should be the true distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ v }[/math] on termination. In virtually all standard algorithms, the following update operation is the (only) operation to update [math]\displaystyle{ d }[/math]-values:
- Choose some arc [math]\displaystyle{ (v,w)\in A }[/math].
- If [math]\displaystyle{ d_s(w)\gt d_s(v)+\ell(v,w) }[/math], then set [math]\displaystyle{ d_s(w):=d_s(v)+\ell(v,w) }[/math].
Obviously, this operation maintains the valid distance property.
Distances along shortest paths
Let [math]\displaystyle{ s\in V }[/math] and for each node [math]\displaystyle{ u\in V }[/math] let [math]\displaystyle{ d_\ell(u) }[/math] denote the distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ u }[/math] with respect to the arc lengths [math]\displaystyle{ \ell }[/math].
Statement: For an arc [math]\displaystyle{ (v,w) }[/math], it is [math]\displaystyle{ d_\ell(w)=d_\ell(v)+\ell(v,w) }[/math] if, and only if, [math]\displaystyle{ (v,w) }[/math] is the last arc of some shortest [math]\displaystyle{ (s,w) }[/math]-path.
Proof: First consider the case that [math]\displaystyle{ d_\ell(w)=d_\ell(v)+\ell(v,w) }[/math]. Then the concatenation of the shortest path from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ v }[/math] and [math]\displaystyle{ (v,w) }[/math] has length [math]\displaystyle{ d_\ell(w) }[/math] and is thus shortest.
So, consider the case that [math]\displaystyle{ d_\ell(w)\neq d_\ell(v)+\ell(v,w) }[/math]. Due to the valid distance property, it is then [math]\displaystyle{ d_\ell(w)\lt d_\ell(v)+\ell(v,w) }[/math]. Suppose for a contradiction that some shortest [math]\displaystyle{ (s,w) }[/math]-path is of the form [math]\displaystyle{ p+(v,w) }[/math]. Then [math]\displaystyle{ p }[/math] would have length [math]\displaystyle{ d_\ell(w)-\ell(v,w)\lt d_\ell(v) }[/math], which contradicts the definition of [math]\displaystyle{ d_\ell(v) }[/math].
Reconstruction of a shortest path from the distances
Suppose that for each node [math]\displaystyle{ v\in V }[/math] the distance [math]\displaystyle{ d_\ell(v) }[/math] from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ v }[/math] is given. For [math]\displaystyle{ t\in V }[/math], a shortest [math]\displaystyle{ (s,t) }[/math]-path [math]\displaystyle{ p }[/math] can be constructed as follows:
- Initialize [math]\displaystyle{ p }[/math] to be empty.
- Set [math]\displaystyle{ w:=t }[/math].
- While [math]\displaystyle{ w\neq s }[/math]:
- Find an arc [math]\displaystyle{ (v,w) }[/math] such that [math]\displaystyle{ d_\ell(w)=d_\ell(v)+\ell(v,w) }[/math].
- Append [math]\displaystyle{ (v,w) }[/math] at the beginning of [math]\displaystyle{ p }[/math].
Shortest-paths arborescence
Statement:
Extension of shortest-paths algorithms:
This modification may be applied to algorithms for shortest-paths problems of all types:
All common algorithms for shortest-paths problems appöy a basic update step: For an arc [math]\displaystyle{ (v,w)\in A }[/math], it is checked whether [math]\displaystyle{ d_\ell(w)\gt d_\ell(v)+\ell(v,w) }[/math], and if so, it is set [math]\displaystyle{ d_\ell(w):=d_\ell(v)+\ell(v,w) }[/math].
In the extension, each node [math]\displaystyle{ v\in V }[/math] holds one of its incoming arcs as an additional attribute. At the beginning, this attribute is initialized as void. When
Whenever the current distance value of a node is updated in a sh