Array list: number: Difference between revisions
Jump to navigation
Jump to search
(Created page with "'''Algorithmic problem:''' Linear sequence: number '''Prerequisites:''' '''Type of algorithm:''' loop '''Auxiliary data:''' # A pointer <math>p</math> of type "pointer...") |
No edit summary |
||
Line 9: | Line 9: | ||
# A pointer <math>p</math> of type "pointer to array list item of type <math>K</math>". | # A pointer <math>p</math> of type "pointer to array list item of type <math>K</math>". | ||
# A counter <math>c \in \mathbb{N}_0</math>. | # A counter <math>c \in \mathbb{N}_0</math>. | ||
== Abstract view == | |||
'''Invariant:''' After <math>i \ge 0</math> iterations: | |||
# The pointer <math>p</math> points to the array list item at position <math>i+1</math> (or is void if there is no such item). | |||
#The value of is the sum of the values n of all array list items at positions <math>1,...,i</math>. | |||
'''Variant:''' <math>p</math> is moved one step forward so as to point to the next array list item. | |||
'''Break condition:''' It is <math>p=</math> void. | |||
==Induction basis== | |||
'''Abstract view:''' Initialize <math>p</math> so as to point to the first array list item. | |||
'''Implementation:''' | |||
Further information | # Set <math>p:=first</math>. | ||
# Set <math>c:=0</math>. | |||
'''Proof:''' Nothing to show. | |||
==Induction step== | |||
'''Abstract view:''' Add the number of elements in the current array and then go forward. | |||
'''Implementation:''' | |||
# If void, terminate the algorithm and return the value of <math>c</math>. | |||
# Otherwise: | |||
## Set <math>c:=c+p</math>.n. | |||
## Set <math>p:=p</math>.next. | |||
'''Correctness:''' Nothing to show. | |||
==Complexity== | |||
'''Statement:''' Linear in the length of the sequence in the worst case (for a fixed value of ). | |||
'''Proof:''' Obvious. | |||
==Further information== |
Revision as of 14:00, 27 January 2015
Algorithmic problem: Linear sequence: number
Prerequisites:
Type of algorithm: loop
Auxiliary data:
- A pointer [math]\displaystyle{ p }[/math] of type "pointer to array list item of type [math]\displaystyle{ K }[/math]".
- A counter [math]\displaystyle{ c \in \mathbb{N}_0 }[/math].
Abstract view
Invariant: After [math]\displaystyle{ i \ge 0 }[/math] iterations:
- The pointer [math]\displaystyle{ p }[/math] points to the array list item at position [math]\displaystyle{ i+1 }[/math] (or is void if there is no such item).
- The value of is the sum of the values n of all array list items at positions [math]\displaystyle{ 1,...,i }[/math].
Variant: [math]\displaystyle{ p }[/math] is moved one step forward so as to point to the next array list item. Break condition: It is [math]\displaystyle{ p= }[/math] void.
Induction basis
Abstract view: Initialize [math]\displaystyle{ p }[/math] so as to point to the first array list item.
Implementation:
- Set [math]\displaystyle{ p:=first }[/math].
- Set [math]\displaystyle{ c:=0 }[/math].
Proof: Nothing to show.
Induction step
Abstract view: Add the number of elements in the current array and then go forward.
Implementation:
- If void, terminate the algorithm and return the value of [math]\displaystyle{ c }[/math].
- Otherwise:
- Set [math]\displaystyle{ c:=c+p }[/math].n.
- Set [math]\displaystyle{ p:=p }[/math].next.
Correctness: Nothing to show.
Complexity
Statement: Linear in the length of the sequence in the worst case (for a fixed value of ).
Proof: Obvious.