Binary search tree: insert: Difference between revisions
Line 16: | Line 16: | ||
== Abstract View == | == Abstract View == | ||
'''Invariant:''' After <math>i \geq 0</math> iterations: | '''Invariant:''' After <math>i \geq 0</math> iterations: | ||
# The pointer | # The pointer <math>p</math> points to a tree node <math>v</math> on height level <math>i</math>. | ||
# The Key '''''K''''' is in the [[Directed Tree#Ranges of Search Tree Nodes|range]] of '''''v'''''. | # The Key '''''K''''' is in the [[Directed Tree#Ranges of Search Tree Nodes|range]] of '''''v'''''. | ||
'''Variant:''' | '''Variant:''' <math>i</math> increased by 1. | ||
'''Break condition:''' One of the following two conditions is fulfilled: | '''Break condition:''' One of the following two conditions is fulfilled: |
Revision as of 09:46, 17 May 2015
General Information
Algorithmic problem: Sorted sequence: insert
Type of algorithm: loop
Auxiliary data: A pointer p of type "pointer to binary search tree node of type [math]\displaystyle{ \mathcal{K} }[/math]."
Abstract View
Invariant: After [math]\displaystyle{ i \geq 0 }[/math] iterations:
- The pointer [math]\displaystyle{ p }[/math] points to a tree node [math]\displaystyle{ v }[/math] on height level [math]\displaystyle{ i }[/math].
- The Key K is in the range of v.
Variant: [math]\displaystyle{ i }[/math] increased by 1.
Break condition: One of the following two conditions is fulfilled:
- It is [math]\displaystyle{ p.key \geq K }[/math] and [math]\displaystyle{ p.left = void }[/math].
- It is [math]\displaystyle{ p.key \leq K }[/math] and [math]\displaystyle{ p.right = void }[/math].
Induction Basis
Abstract view: If the tree is empty, a new root with key K is created; otherwise, p is initialized so as to point to the root.
Implementation:
- If [math]\displaystyle{ root = void }[/math]:
- Create a new binary search tree node and let root point to it.
- Set [math]\displaystyle{ root.key := K, root.left := void }[/math]. and [math]\displaystyle{ root.right := void }[/math].
- Otherwise, set [math]\displaystyle{ p := root }[/math].
Proof: Obvious.
Induction Step
Abstract view: If the direction where to go next is void, insert K in that empty slot and terminate the algorithm. Otherwise, proceed in that direction.
Implementation:
- If [math]\displaystyle{ p.key = K }[/math]:
- If [math]\displaystyle{ p.left = void }[/math]:
- Create a new node and let [math]\displaystyle{ p.left }[/math] point to it.
- Set [math]\displaystyle{ p.left.key := K }[/math], [math]\displaystyle{ p.left.left := void }[/math], and [math]\displaystyle{ p.left.right := void }[/math].
- Terminate the algorithm.
- Otherwise, if [math]\displaystyle{ p.right = void }[/math]:
- Create a new node and let [math]\displaystyle{ p.right }[/math] point to it.
- Set [math]\displaystyle{ p.left.key := K }[/math], [math]\displaystyle{ p.left.left := void }[/math], and [math]\displaystyle{ p.left.right := void }[/math].
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p := p.left }[/math].
- If [math]\displaystyle{ p.left = void }[/math]:
- Otherwise, if [math]\displaystyle{ p.key \gt K }[/math]:
- If [math]\displaystyle{ p.left = void }[/math]:
- Create a new node and let [math]\displaystyle{ p.left }[/math] point to it.
- Set [math]\displaystyle{ p.left.key := K }[/math], [math]\displaystyle{ p.left.left := void }[/math], and [math]\displaystyle{ p.left.right := void }[/math].
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p := p.left }[/math].
- If [math]\displaystyle{ p.left = void }[/math]:
- Otherwise (that is, [math]\displaystyle{ p.key \lt K }[/math]):
- If [math]\displaystyle{ p.right = void }[/math]:
- Create a new node and let [math]\displaystyle{ p.right }[/math] point to it.
- Set [math]\displaystyle{ p.right.key := K }[/math], [math]\displaystyle{ p.right.left := void }[/math], and [math]\displaystyle{ p.right.right := void }[/math].
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p := p.right }[/math].
- If [math]\displaystyle{ p.right = void }[/math]:
Complexity
Statement: Linear in the length of the sequence in the worst case (more precisely, linear in the height of the tree).
Proof: Obvious.
Pseudocode
TREE-INSERT(T, z)
- y = Null
- x = root(T)
- while x ≠ NULL
- y = x
- if key[z] < key[x]
- then x = left[x]
- then x = right[x]
- p[z] = y
- if y = NULL
- then root[T] = z //Tree was empty
- else if key[z] < key[y]
- then left[y] = z
- else right[y] = z