Asymptotic comparison of functions: Difference between revisions
Jump to navigation
Jump to search
Line 33: | Line 33: | ||
# '''logarithmic''' if <math>f\in\Theta(\log(n))</math>; | # '''logarithmic''' if <math>f\in\Theta(\log(n))</math>; | ||
# '''"n-log-n"''' if <math>f\in\Theta(n\cdot\log(n))</math>; | # '''"n-log-n"''' if <math>f\in\Theta(n\cdot\log(n))</math>; | ||
# '''polynomial''' if there is a polynomial <math>p</math> such that ; | # '''polynomial''' if there is a polynomial <math>p:\mathbb{N}\rightarrow\mathbb{R}</math> such that <math>f\in\mathcal{O}(p)</math>; | ||
# '''subexponential''' if | # '''subexponential''' if <math>f\in o(a^n)</math> for every <math>a\in\mathbb{R}</math>, <math>a>1</math>; | ||
# '''exponential''' if there are , , such that | # '''exponential''' if there are <math>a,b\in\mathbb{R}</math>, <math>a>b>1</math>, such that <math>f\in\mathcal{O}(a^n)</math> and <math>f\in\Omega(b^n)</math>; | ||
# '''factorial''' if | # '''factorial''' if <math>f\in\Theta(n!)</math>. | ||
'''Remark:''' Note that the notion of polynomial is based on an "<math>\mathcal{O}</math>", not on a "<math>\Theta</math>". In fact, in this context, "polynomial" is usually used short for "polynomially bounded from above". | |||
== Multidimensional case == | == Multidimensional case == |
Revision as of 09:18, 26 May 2015
One-dimensional case
Let [math]\displaystyle{ f:\mathbb{N}\rightarrow\mathbb{R}^+_0 }[/math] be a function. The following sets (a.k.a. classes) are defined for [math]\displaystyle{ f }[/math]:
- [math]\displaystyle{ \mathcal{O}(f) }[/math] consists of all functions [math]\displaystyle{ g:\mathbb{N}\rightarrow\mathbb{R}^+_0 }[/math] such that there are [math]\displaystyle{ N_g,\,c_g\in\mathbb{N} }[/math] that fulfill [math]\displaystyle{ g(n)\leq c_g\cdot f(n) }[/math] for all [math]\displaystyle{ n\geq N_g }[/math], [math]\displaystyle{ n\in\mathbb{N} }[/math];
- [math]\displaystyle{ \Omega(f) }[/math] consists of all functions [math]\displaystyle{ g:\mathbb{N}\rightarrow\mathbb{R}^+_0 }[/math] such that there are [math]\displaystyle{ N_g,\,c_g\in\mathbb{N} }[/math] that fulfill [math]\displaystyle{ g(n)\geq c_g\cdot f(n) }[/math] for all [math]\displaystyle{ n\geq N_g }[/math], [math]\displaystyle{ n\in\mathbb{N} }[/math];
- [math]\displaystyle{ \Theta(f):=\mathcal{O}(f)\cap\Omega(f) }[/math];
- [math]\displaystyle{ o(f):=\mathcal{O}(f)\setminus\Theta(f) }[/math].
Mathematical rules for asymptotic comparison
Let [math]\displaystyle{ f,g,h:\mathbb{N}\rightarrow\mathbb{R}^+_0 }[/math] be three functions.
- Anti-reflexivity: If [math]\displaystyle{ f\in\mathcal{O}(g) }[/math], it is [math]\displaystyle{ g\in\Omega(f) }[/math], and vice versa.
- Transitivity: If [math]\displaystyle{ f\in\oplus(g) }[/math] and [math]\displaystyle{ g\in\oplus(h) }[/math] then [math]\displaystyle{ f\in\oplus(h) }[/math], where "[math]\displaystyle{ \oplus }[/math]" is anyone of "[math]\displaystyle{ \mathcal{O} }[/math]", "[math]\displaystyle{ \Omega }[/math]", "[math]\displaystyle{ \Theta }[/math]", and "[math]\displaystyle{ o }[/math]".
- It is [math]\displaystyle{ \mathcal{O}(f)\cup\mathcal{O}(g)\subseteq\mathcal{O}(f+g) }[/math].
- If [math]\displaystyle{ f\in\mathcal{O}(g) }[/math], it is [math]\displaystyle{ \oplus(f+g)=\oplus(g) }[/math], where "[math]\displaystyle{ \oplus }[/math]" is anyone of "[math]\displaystyle{ \mathcal{O} }[/math]", "[math]\displaystyle{ \Omega }[/math]", "[math]\displaystyle{ \Theta }[/math]", and "[math]\displaystyle{ o }[/math]".
- It is [math]\displaystyle{ f\in\oplus\mathcal(g) }[/math] if, and only if, the [limit superior] of the series [math]\displaystyle{ f(n)/g(n) }[/math] for [math]\displaystyle{ n\rightarrow+\infty }[/math] is finite.
- It is [math]\displaystyle{ f\in o(g) }[/math] if, and only if, this limit superior is zero. Note that, due to nonnegativity, this is equivalent to the statement that [math]\displaystyle{ \lim_{n\rightarrow+\infty}f(n)/g(n) }[/math] exists and equals zero.
- For [math]\displaystyle{ a,b\in\mathbb{R} }[/math], [math]\displaystyle{ a,b\gt 1 }[/math], it is [math]\displaystyle{ \oplus(\log_a(n))=\oplus(\log_b(n)) }[/math], where "[math]\displaystyle{ \oplus }[/math]" is anyone of "[math]\displaystyle{ \mathcal{O} }[/math]", "[math]\displaystyle{ \Omega }[/math]", "[math]\displaystyle{ \Theta }[/math]", and "[math]\displaystyle{ o }[/math]" (follows immediately from the basic rule [math]\displaystyle{ \log_a(n)/\log_b(n)=\log_a(b)= }[/math] const). In particular, the base of a logarithm function may be omitted: [math]\displaystyle{ \oplus(\log(n))=\oplus(\log_a(n)) }[/math].
- For all [math]\displaystyle{ k,\ell\in\mathbb{R} }[/math], [math]\displaystyle{ k\lt \ell }[/math], it is [math]\displaystyle{ n^k\in o(n^\ell) }[/math].
- For all [math]\displaystyle{ k\in\mathbb{R}^+ }[/math], it is [math]\displaystyle{ \log^k(n)\in o(n) }[/math].
- For all [math]\displaystyle{ k,a\in\mathbb{R} }[/math], [math]\displaystyle{ a\gt 1 }[/math], it is [math]\displaystyle{ n^k\in o(a^n) }[/math].
- For all [math]\displaystyle{ a,b\in\mathbb{R} }[/math], [math]\displaystyle{ 1\lt a\lt b }[/math], it is [math]\displaystyle{ a^n\in o(b^n) }[/math].
- For all [math]\displaystyle{ a\in\mathbb{R} }[/math], [math]\displaystyle{ a\gt 1 }[/math], it is [math]\displaystyle{ a^n\in o(n!) }[/math].
Comparison with specific functions
A function [math]\displaystyle{ f:\mathbb{N}\rightarrow\mathbb{R}^+_0 }[/math] is said to be
- linear if [math]\displaystyle{ f\in\Theta(n) }[/math];
- quadratic if [math]\displaystyle{ f\in\Theta(n^2) }[/math];
- cubic if [math]\displaystyle{ f\in\Theta(n^3) }[/math];
- logarithmic if [math]\displaystyle{ f\in\Theta(\log(n)) }[/math];
- "n-log-n" if [math]\displaystyle{ f\in\Theta(n\cdot\log(n)) }[/math];
- polynomial if there is a polynomial [math]\displaystyle{ p:\mathbb{N}\rightarrow\mathbb{R} }[/math] such that [math]\displaystyle{ f\in\mathcal{O}(p) }[/math];
- subexponential if [math]\displaystyle{ f\in o(a^n) }[/math] for every [math]\displaystyle{ a\in\mathbb{R} }[/math], [math]\displaystyle{ a\gt 1 }[/math];
- exponential if there are [math]\displaystyle{ a,b\in\mathbb{R} }[/math], [math]\displaystyle{ a\gt b\gt 1 }[/math], such that [math]\displaystyle{ f\in\mathcal{O}(a^n) }[/math] and [math]\displaystyle{ f\in\Omega(b^n) }[/math];
- factorial if [math]\displaystyle{ f\in\Theta(n!) }[/math].
Remark: Note that the notion of polynomial is based on an "[math]\displaystyle{ \mathcal{O} }[/math]", not on a "[math]\displaystyle{ \Theta }[/math]". In fact, in this context, "polynomial" is usually used short for "polynomially bounded from above".
Multidimensional case
Let and let . The following sets (a.k.a. classes) are defined for :
consists of all functions such that there are and that fulfill for all such that ; consists of all functions such that there are and that fulfill for all such that ;
.