Simple string matching algorithm: Difference between revisions
(9 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
[[Category:Videos]] | |||
[[Category:Algorithm]] | [[Category:Algorithm]] | ||
[[Category:Main Algorithm]] | [[Category:Main Algorithm]] | ||
{{#ev:youtube|https://www.youtube.com/watch?v=5p4fZGRaYuo|500|right|Simple string matching|frame}} | |||
'''Algorithmic problem:''' [[One-dimensional string matching]] | '''Algorithmic problem:''' [[One-dimensional string matching]] | ||
==Abstract view== | |||
'''Type of algorithm:''' loop | '''Type of algorithm:''' loop | ||
'''Auxiliary data''' | '''Auxiliary data''' An [[ordered sequence]] <math>I</math> of natural numbers. | ||
'''Invariant:''' After <math>i\ge 0</math> iterations: | '''Invariant:''' After <math>i\ge 0</math> iterations: | ||
# In ascending order, <math>R</math> contains exactly the start indexes of all occurrences of <math>T</math> in <math>S</math> that lie completely in the substring <math>(S[1],...,S[i])</math> of <math>S</math>. In other words, <math>R</math> contains the start indexes in the range <math>S[1],...,S[i-m+1] | # In ascending order, <math>R</math> contains exactly the start indexes of all occurrences of <math>T</math> in <math>S</math> that lie completely in the substring <math>(S[1],...,S[i])</math> of <math>S</math>. In other words, <math>R</math> contains the start indexes in the range <math>S[1],...,S[i-m+1]</math>. | ||
# In ascending order, <math>I</math> contains exactly the start indexes of all occurrences of <math>T</math> in <math>S</math> that lie partially in the substring <math>(S[1],...,S[i])</math> of <math>S</math>. In other words, <math>I</math> contains the start indexes in the range <math>S[i-m+2],...,S[i]</math>. | # In ascending order, <math>I</math> contains exactly the start indexes of all "candidates," that is, all occurrences of <math>T</math> in <math>S</math> that lie partially in the substring <math>(S[1],...,S[i])</math> of <math>S</math>. In other words, <math>I</math> contains the start indexes in the range <math>S[i-m+2],...,S[i]</math>. | ||
'''Variant:''' <math>i</math> increases by <math>1</math>. | '''Variant:''' <math>i</math> increases by <math>1</math>. | ||
'''Break condition:''' <math> | '''Break condition:''' <math>n</math> iterations completed. | ||
==Induction basis== | ==Induction basis== | ||
'''Abstract view:''' <math>R</math> and <math>I</math> have to be empty. | '''Abstract view:''' <math>R</math> and <math>I</math> have to be empty. | ||
'''Implementation:''' | '''Implementation:''' obvious. | ||
'''Proof:''' Nothing to show. | '''Proof:''' Nothing to show. | ||
==Induction step== | ==Induction step== | ||
'''Abstract view:''' | |||
# For each start index <math>j</math> in <math>I</math>, we decide whether this is still a candidate, that is, whether <math>S[i]=T[i-j+1]</math>. If not, we remove this start index from <math>I</math>. | |||
# Afterwards: | |||
## If <math>S[i]=T[1]</math>, <math>i</math> is a new candidate and is thus appended at the tail of <math>I</math>. | |||
## If <math>I\neq\emptyset</math> and <math>i-m+1</math> is the head element of <math>I</math>, this start index is removed from <math>I</math> and appended at the tail of <math>R</math>. | |||
'''Implementation:''' Obvious. | |||
'''Correctness:''' | |||
# Due to the second invariant, the induction hypothesis implies that all elements of <math>I</math> immediately before the <math>i</math>-th iteration must be from the set <math>\{i-m+1,...,i-1\}</math>. Therefore, if <math>i-m+1</math> is in <math>I</math>, it is the smallest element. Since the elements of <math>I</math> are in ascending order, <math>i-m+1</math> is then at the head of <math>I</math>. | |||
# A start index <math>j</math> in <math>I</math> is to be dropped if, and only if, it turns out not to be a promising candidate anymore. As the induction hypothesis implies <math>(S[j],...,S[i-1])=(T[1],...,T[i-j])</math>, this is the case if, and only if, <math>S[i]\neq T[i-j+1]</math>. | |||
# Clearly, it would be incorrect to transfer any element of <math>I</math> except <math>i-m+1</math> to <math>R</math>. Thus, we are right to focus on <math>i-m+1</math> in Step 2.2. Now, <math>i-m+1</math> is in <math>I</math> if, and only if, (1) it was present immediately before the <math>i</math>-th iteration and (2) it has survived the first step of the <math>i</math>-th iteration. The induction hypothesis implies <math>(S[i-m+1],...,S[i-1])=(T[1],...,T[m-1])</math>, so it is correct to transfer <math>i-m+1</math> to <math>R</math> if, and only if, it is <math>S[i]=T[m]</math> as well. | |||
# Clearly, it would also be incorrect to add any element to <math>I</math> except <math>i</math>. So we are right to focus on <math>i</math> in Step 2.1.By induction hypothesis, all elements of <math>I</math> are less than <math>i</math>, so we are also right to append <math>i</math> at the tail of <math>I</math> in case <math>S[i]=T[1]</math>. | |||
==Complexity== | ==Complexity== | ||
'''Statement:''' Let <math>r\in \mathbb{N}</math> denote the maximal number of candidates to be considered simultaneously. Then the worst-case run time is in <math>\mathcal{O}(n\cdot r)\subseteq\mathcal{O}(n\cdot m)</math>. | |||
'''Proof:''' Obviously, the first step of an iteration takes <math>\mathcal{O}(r)</math> time, and the other steps take constant time. The loop has <math>n</math> iterations. Of course, it is <math>r\leq m</math>. |
Latest revision as of 10:13, 21 September 2015
Algorithmic problem: One-dimensional string matching
Abstract view
Type of algorithm: loop
Auxiliary data An ordered sequence [math]\displaystyle{ I }[/math] of natural numbers.
Invariant: After [math]\displaystyle{ i\ge 0 }[/math] iterations:
- In ascending order, [math]\displaystyle{ R }[/math] contains exactly the start indexes of all occurrences of [math]\displaystyle{ T }[/math] in [math]\displaystyle{ S }[/math] that lie completely in the substring [math]\displaystyle{ (S[1],...,S[i]) }[/math] of [math]\displaystyle{ S }[/math]. In other words, [math]\displaystyle{ R }[/math] contains the start indexes in the range [math]\displaystyle{ S[1],...,S[i-m+1] }[/math].
- In ascending order, [math]\displaystyle{ I }[/math] contains exactly the start indexes of all "candidates," that is, all occurrences of [math]\displaystyle{ T }[/math] in [math]\displaystyle{ S }[/math] that lie partially in the substring [math]\displaystyle{ (S[1],...,S[i]) }[/math] of [math]\displaystyle{ S }[/math]. In other words, [math]\displaystyle{ I }[/math] contains the start indexes in the range [math]\displaystyle{ S[i-m+2],...,S[i] }[/math].
Variant: [math]\displaystyle{ i }[/math] increases by [math]\displaystyle{ 1 }[/math].
Break condition: [math]\displaystyle{ n }[/math] iterations completed.
Induction basis
Abstract view: [math]\displaystyle{ R }[/math] and [math]\displaystyle{ I }[/math] have to be empty.
Implementation: obvious.
Proof: Nothing to show.
Induction step
Abstract view:
- For each start index [math]\displaystyle{ j }[/math] in [math]\displaystyle{ I }[/math], we decide whether this is still a candidate, that is, whether [math]\displaystyle{ S[i]=T[i-j+1] }[/math]. If not, we remove this start index from [math]\displaystyle{ I }[/math].
- Afterwards:
- If [math]\displaystyle{ S[i]=T[1] }[/math], [math]\displaystyle{ i }[/math] is a new candidate and is thus appended at the tail of [math]\displaystyle{ I }[/math].
- If [math]\displaystyle{ I\neq\emptyset }[/math] and [math]\displaystyle{ i-m+1 }[/math] is the head element of [math]\displaystyle{ I }[/math], this start index is removed from [math]\displaystyle{ I }[/math] and appended at the tail of [math]\displaystyle{ R }[/math].
Implementation: Obvious.
Correctness:
- Due to the second invariant, the induction hypothesis implies that all elements of [math]\displaystyle{ I }[/math] immediately before the [math]\displaystyle{ i }[/math]-th iteration must be from the set [math]\displaystyle{ \{i-m+1,...,i-1\} }[/math]. Therefore, if [math]\displaystyle{ i-m+1 }[/math] is in [math]\displaystyle{ I }[/math], it is the smallest element. Since the elements of [math]\displaystyle{ I }[/math] are in ascending order, [math]\displaystyle{ i-m+1 }[/math] is then at the head of [math]\displaystyle{ I }[/math].
- A start index [math]\displaystyle{ j }[/math] in [math]\displaystyle{ I }[/math] is to be dropped if, and only if, it turns out not to be a promising candidate anymore. As the induction hypothesis implies [math]\displaystyle{ (S[j],...,S[i-1])=(T[1],...,T[i-j]) }[/math], this is the case if, and only if, [math]\displaystyle{ S[i]\neq T[i-j+1] }[/math].
- Clearly, it would be incorrect to transfer any element of [math]\displaystyle{ I }[/math] except [math]\displaystyle{ i-m+1 }[/math] to [math]\displaystyle{ R }[/math]. Thus, we are right to focus on [math]\displaystyle{ i-m+1 }[/math] in Step 2.2. Now, [math]\displaystyle{ i-m+1 }[/math] is in [math]\displaystyle{ I }[/math] if, and only if, (1) it was present immediately before the [math]\displaystyle{ i }[/math]-th iteration and (2) it has survived the first step of the [math]\displaystyle{ i }[/math]-th iteration. The induction hypothesis implies [math]\displaystyle{ (S[i-m+1],...,S[i-1])=(T[1],...,T[m-1]) }[/math], so it is correct to transfer [math]\displaystyle{ i-m+1 }[/math] to [math]\displaystyle{ R }[/math] if, and only if, it is [math]\displaystyle{ S[i]=T[m] }[/math] as well.
- Clearly, it would also be incorrect to add any element to [math]\displaystyle{ I }[/math] except [math]\displaystyle{ i }[/math]. So we are right to focus on [math]\displaystyle{ i }[/math] in Step 2.1.By induction hypothesis, all elements of [math]\displaystyle{ I }[/math] are less than [math]\displaystyle{ i }[/math], so we are also right to append [math]\displaystyle{ i }[/math] at the tail of [math]\displaystyle{ I }[/math] in case [math]\displaystyle{ S[i]=T[1] }[/math].
Complexity
Statement: Let [math]\displaystyle{ r\in \mathbb{N} }[/math] denote the maximal number of candidates to be considered simultaneously. Then the worst-case run time is in [math]\displaystyle{ \mathcal{O}(n\cdot r)\subseteq\mathcal{O}(n\cdot m) }[/math].
Proof: Obviously, the first step of an iteration takes [math]\displaystyle{ \mathcal{O}(r) }[/math] time, and the other steps take constant time. The loop has [math]\displaystyle{ n }[/math] iterations. Of course, it is [math]\displaystyle{ r\leq m }[/math].