Binary search tree: insert: Difference between revisions
(15 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
'''Type of algorithm:''' loop | '''Type of algorithm:''' loop | ||
'''Auxiliary data:''' A pointer | '''Auxiliary data:''' A pointer <math>p</math> of type "pointer to binary search tree node of type <math>\mathcal{K}</math>." | ||
== Abstract View == | == Abstract View == | ||
'''Invariant:''' After <math>i \geq 0</math> iterations: | '''Invariant:''' After <math>i \geq 0</math> iterations: | ||
# The pointer | # The pointer <math>p</math> points to a tree node <math>v</math> on height level <math>i</math>. | ||
# The Key | # The Key <math>K</math> is in the [[Directed Tree#Ranges of Search Tree Nodes|range]] of '''''v'''''. | ||
'''Variant:''' | '''Variant:''' <math>i</math> is increased by 1. | ||
'''Break condition:''' One of the following two conditions is fulfilled: | '''Break condition:''' One of the following two conditions is fulfilled: | ||
# It is <math>p.key \geq K</math> and <math>p.left = | # It is <math>p</math>.key <math>\geq K</math> and <math>p</math>.left <math>=</math>void. | ||
# It is <math>p.key \leq K</math> and <math>p.right = void</math>. | # It is <math>p</math>.key <math>\leq K</math> and <math>p</math>.right <math>=</math>void. | ||
'''Remark:''' For example, the height of the subtree rooted at the node to which <math>p</math> points may be chosen as the induction parameter. For conciseness, the induction parameter is omitted in the following. | |||
== Induction Basis == | == Induction Basis == | ||
'''Abstract view:''' If the tree is empty, a new root with key | '''Abstract view:''' If the tree is empty, a new root with key <math>K</math> is created; otherwise, <math>p</math> is initialized so as to point to the root. | ||
'''Implementation:''' | '''Implementation:''' | ||
# If | # If root = void: | ||
## Create a new binary search tree node and let | ## Create a new binary search tree node and let root point to it. | ||
## Set <math> | ## Set root.key<math>:= K</math>, root.left <math>:=</math> void, and root.right <math>:=</math> void. | ||
# Otherwise, set <math>p := root</math>. | # Otherwise, set <math>p := root</math>. | ||
Line 37: | Line 39: | ||
== Induction Step == | == Induction Step == | ||
'''Abstract view:''' If the direction where to go next is void, insert | '''Abstract view:''' If the direction where to go next is void, insert <math>K</math> in that empty slot and terminate the algorithm. Otherwise, proceed in that direction. | ||
'''Implementation:''' | '''Implementation:''' | ||
# If <math>p.key = K</math>: | # If <math>p</math>.key <math>= K</math>: | ||
## If <math>p.left = void | ## If <math>p</math>.left = void: | ||
### Create a new node and let <math>p | ### Create a new node and let <math>p</math>.left point to it. | ||
### Set <math>p.left.key := K</math>, <math>p.left.left := | ### Set <math>p</math>.left.key <math>:= K</math>, <math>p</math>.left.left <math>:=</math>void, and <math>p</math>.left.right <math>:=</math> void. | ||
### Terminate the algorithm. | ### Terminate the algorithm. | ||
## Otherwise, if <math>p.right = void | ## Otherwise, if <math>p</math>.right = void: | ||
### Create a new node and let <math>p | ### Create a new node and let <math>p</math>.right point to it. | ||
### Set <math>p. | ### Set <math>p</math>.right.key <math>:= K</math>, <math>p</math>.right.left := void, and <math>p</math>.right.right := void. | ||
### Terminate the algorithm. | ### Terminate the algorithm. | ||
## Otherwise, set <math>p := p | ## Otherwise, set <math>p := p</math>.left. | ||
# Otherwise, if <math>p.key > K</math>: | # Otherwise, if <math>p</math>.key <math>> K</math>: | ||
## If <math>p.left = void | ## If <math>p</math>.left = void: | ||
### Create a new node and let <math>p | ### Create a new node and let <math>p</math>.left point to it. | ||
### Set <math>p.left.key := K</math>, <math>p.left.left := | ### Set <math>p</math>.left.key <math>:= K</math>, <math>p</math>.left.left <math>:=</math>void, and <math>p</math>.left.right <math>:=</math>void. | ||
### Terminate the algorithm. | ### Terminate the algorithm. | ||
## Otherwise, set <math>p := p | ## Otherwise, set <math>p := p</math>.left. | ||
# Otherwise (that is, <math>p.key < K</math>): | # Otherwise (that is, <math>p</math>.key <math>< K</math>): | ||
## If <math>p.right = void | ## If <math>p</math>.right = void: | ||
### Create a new node and let <math>p | ### Create a new node and let <math>p</math>.right point to it. | ||
### Set <math>p.right.key := K</math>, <math>p.right.left := | ### Set <math>p</math>.right.key <math>:= K</math>, <math>p</math>.right.left <math>:=</math>void, and <math>p</math>.right.right <math>:=</math>void. | ||
### Terminate the algorithm. | ### Terminate the algorithm. | ||
## Otherwise, set <math>p := p | ## Otherwise, set <math>p := p</math>.right. | ||
== Complexity == | == Complexity == | ||
'''Statement:''' | '''Statement:''' The complexity is in <math>\mathcal{O}(T\cdot h)\subseteq\mathcal{O}(T\cdot n)</math> in the worst case, where <math>n</math> is the length of the sequence, <math>h</math> the height of the tree, and <math>T</math> the complexity of the comparison. | ||
'''Proof:''' Obvious. | '''Proof:''' Obvious. | ||
Latest revision as of 13:39, 3 March 2017
General Information
Algorithmic problem: Sorted sequence: insert
Type of algorithm: loop
Auxiliary data: A pointer [math]\displaystyle{ p }[/math] of type "pointer to binary search tree node of type [math]\displaystyle{ \mathcal{K} }[/math]."
Abstract View
Invariant: After [math]\displaystyle{ i \geq 0 }[/math] iterations:
- The pointer [math]\displaystyle{ p }[/math] points to a tree node [math]\displaystyle{ v }[/math] on height level [math]\displaystyle{ i }[/math].
- The Key [math]\displaystyle{ K }[/math] is in the range of v.
Variant: [math]\displaystyle{ i }[/math] is increased by 1.
Break condition: One of the following two conditions is fulfilled:
- It is [math]\displaystyle{ p }[/math].key [math]\displaystyle{ \geq K }[/math] and [math]\displaystyle{ p }[/math].left [math]\displaystyle{ = }[/math]void.
- It is [math]\displaystyle{ p }[/math].key [math]\displaystyle{ \leq K }[/math] and [math]\displaystyle{ p }[/math].right [math]\displaystyle{ = }[/math]void.
Remark: For example, the height of the subtree rooted at the node to which [math]\displaystyle{ p }[/math] points may be chosen as the induction parameter. For conciseness, the induction parameter is omitted in the following.
Induction Basis
Abstract view: If the tree is empty, a new root with key [math]\displaystyle{ K }[/math] is created; otherwise, [math]\displaystyle{ p }[/math] is initialized so as to point to the root.
Implementation:
- If root = void:
- Create a new binary search tree node and let root point to it.
- Set root.key[math]\displaystyle{ := K }[/math], root.left [math]\displaystyle{ := }[/math] void, and root.right [math]\displaystyle{ := }[/math] void.
- Otherwise, set [math]\displaystyle{ p := root }[/math].
Proof: Obvious.
Induction Step
Abstract view: If the direction where to go next is void, insert [math]\displaystyle{ K }[/math] in that empty slot and terminate the algorithm. Otherwise, proceed in that direction.
Implementation:
- If [math]\displaystyle{ p }[/math].key [math]\displaystyle{ = K }[/math]:
- If [math]\displaystyle{ p }[/math].left = void:
- Create a new node and let [math]\displaystyle{ p }[/math].left point to it.
- Set [math]\displaystyle{ p }[/math].left.key [math]\displaystyle{ := K }[/math], [math]\displaystyle{ p }[/math].left.left [math]\displaystyle{ := }[/math]void, and [math]\displaystyle{ p }[/math].left.right [math]\displaystyle{ := }[/math] void.
- Terminate the algorithm.
- Otherwise, if [math]\displaystyle{ p }[/math].right = void:
- Create a new node and let [math]\displaystyle{ p }[/math].right point to it.
- Set [math]\displaystyle{ p }[/math].right.key [math]\displaystyle{ := K }[/math], [math]\displaystyle{ p }[/math].right.left := void, and [math]\displaystyle{ p }[/math].right.right := void.
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p := p }[/math].left.
- If [math]\displaystyle{ p }[/math].left = void:
- Otherwise, if [math]\displaystyle{ p }[/math].key [math]\displaystyle{ \gt K }[/math]:
- If [math]\displaystyle{ p }[/math].left = void:
- Create a new node and let [math]\displaystyle{ p }[/math].left point to it.
- Set [math]\displaystyle{ p }[/math].left.key [math]\displaystyle{ := K }[/math], [math]\displaystyle{ p }[/math].left.left [math]\displaystyle{ := }[/math]void, and [math]\displaystyle{ p }[/math].left.right [math]\displaystyle{ := }[/math]void.
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p := p }[/math].left.
- If [math]\displaystyle{ p }[/math].left = void:
- Otherwise (that is, [math]\displaystyle{ p }[/math].key [math]\displaystyle{ \lt K }[/math]):
- If [math]\displaystyle{ p }[/math].right = void:
- Create a new node and let [math]\displaystyle{ p }[/math].right point to it.
- Set [math]\displaystyle{ p }[/math].right.key [math]\displaystyle{ := K }[/math], [math]\displaystyle{ p }[/math].right.left [math]\displaystyle{ := }[/math]void, and [math]\displaystyle{ p }[/math].right.right [math]\displaystyle{ := }[/math]void.
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p := p }[/math].right.
- If [math]\displaystyle{ p }[/math].right = void:
Complexity
Statement: The complexity is in [math]\displaystyle{ \mathcal{O}(T\cdot h)\subseteq\mathcal{O}(T\cdot n) }[/math] in the worst case, where [math]\displaystyle{ n }[/math] is the length of the sequence, [math]\displaystyle{ h }[/math] the height of the tree, and [math]\displaystyle{ T }[/math] the complexity of the comparison.
Proof: Obvious.
Pseudocode
TREE-INSERT(T, z)
- y = Null
- x = root(T)
- while x ≠ NULL
- y = x
- if key[z] < key[x]
- then x = left[x]
- then x = right[x]
- p[z] = y
- if y = NULL
- then root[T] = z //Tree was empty
- else if key[z] < key[y]
- then left[y] = z
- else right[y] = z