Quicksort: Difference between revisions

From Algowiki
Jump to navigation Jump to search
mNo edit summary
Line 33: Line 33:


=== Abstract view: ===
=== Abstract view: ===
# Choose a pivot value <math>p \in [min\{x|x \in S\},\dots,max\{x|x \in S\}]</math> (note that <math>p</math> is not required to be an element of <math>S</math>.
# Partition <math>S</math> into sequences, <math>S_1</math>, <math>S_2</math> and <math>S_3</math>, such that <math>x < p</math> for <math>x \in S_1</math>, <math>x = p</math> for <math>x \in S_2</math>, and <math>x > p</math> for <math>x \in S_3</math>.
# Sort <math>S_1</math> and <math>S_3</math> recursively.
# The concatenation of all three lists, <math>S_1 \| S_2 \| S_3</math>, is the result of the algorithm.


=== Implementation: ===
=== Implementation: ===

Revision as of 13:42, 2 October 2014

General information

Algorithmic problem: Sorting based on pairwise comparison

Type of algorithm: recursion

Abstract view

Invariant: After a recursive call, the input sequence of this recursive call is sorted.

Variant: In each recursive call, the sequence of the callee is strictly shorter than that of the caller.

Break condition: The sequence is empty or a singleton.

Induction basis

Abstract view: Nothing to do on an empty sequence or a singleton.

Implementation: Ditto.

Proof: Empty sequences and singletons are trivially sorted.

Induction step

Abstract view:

  1. Choose a pivot value [math]\displaystyle{ p \in [min\{x|x \in S\},\dots,max\{x|x \in S\}] }[/math] (note that [math]\displaystyle{ p }[/math] is not required to be an element of [math]\displaystyle{ S }[/math].
  2. Partition [math]\displaystyle{ S }[/math] into sequences, [math]\displaystyle{ S_1 }[/math], [math]\displaystyle{ S_2 }[/math] and [math]\displaystyle{ S_3 }[/math], such that [math]\displaystyle{ x \lt p }[/math] for [math]\displaystyle{ x \in S_1 }[/math], [math]\displaystyle{ x = p }[/math] for [math]\displaystyle{ x \in S_2 }[/math], and [math]\displaystyle{ x \gt p }[/math] for [math]\displaystyle{ x \in S_3 }[/math].
  3. Sort [math]\displaystyle{ S_1 }[/math] and [math]\displaystyle{ S_3 }[/math] recursively.
  4. The concatenation of all three lists, [math]\displaystyle{ S_1 \| S_2 \| S_3 }[/math], is the result of the algorithm.

Implementation:

Correctness:

Complexity

Further information