Breadth-first search: Difference between revisions
Line 24: | Line 24: | ||
Before and after each iteration: | Before and after each iteration: | ||
# There is a '''current distance''' <math>k\in\mathbb{N}</math>. | # There is a '''current distance''' <math>k\in\mathbb{N}</math>. | ||
# Let <math>n</math> denote the current size of <math>Q</math>. There is <math>\ell\in\{1,\ldots,n\}</math> such that | # All nodes with distance less than <math>k</math> are already seen. | ||
# Let <math>n</math> denote the current size of <math>Q</math>. There is <math>\ell\in\{1,\ldots,n\}</math> such that: | |||
## The first <math>\ell</math> elements of <math>Q</math> have distance <math>k</math> and the last <math>n-\ell</math> elements have distance <math>k+1</math>. | |||
## If <math>\ell<n</math> (that is, if there are nodes with distance <math>k+1</math> in <math>Q</math>), all nodes with distance <math>k</math> are already seen. | |||
'''Variant:''' One node is removed from <math>Q</math>. | '''Variant:''' One node is removed from <math>Q</math>. |
Revision as of 10:54, 10 October 2014
General information
Algorithmic problem: Graph traversal
Type of algorithm: loop.
Abstract view
Definition: On this page, the distance of a node [math]\displaystyle{ v\in V }[/math] is the minimal number of arcs on a path from the start node [math]\displaystyle{ s }[/math] to [math]\displaystyle{ v }[/math].
Specific characteristic: The nodes are finished in the order of increasing distance (which is not unique, in general).
Auxiliary data: A FIFO queue [math]\displaystyle{ Q }[/math] whose elements are nodes in [math]\displaystyle{ V }[/math].
Invariant: Before and after each iteration:
- There is a current distance [math]\displaystyle{ k\in\mathbb{N} }[/math].
- All nodes with distance less than [math]\displaystyle{ k }[/math] are already seen.
- Let [math]\displaystyle{ n }[/math] denote the current size of [math]\displaystyle{ Q }[/math]. There is [math]\displaystyle{ \ell\in\{1,\ldots,n\} }[/math] such that:
- The first [math]\displaystyle{ \ell }[/math] elements of [math]\displaystyle{ Q }[/math] have distance [math]\displaystyle{ k }[/math] and the last [math]\displaystyle{ n-\ell }[/math] elements have distance [math]\displaystyle{ k+1 }[/math].
- If [math]\displaystyle{ \ell\lt n }[/math] (that is, if there are nodes with distance [math]\displaystyle{ k+1 }[/math] in [math]\displaystyle{ Q }[/math]), all nodes with distance [math]\displaystyle{ k }[/math] are already seen.
Variant: One node is removed from [math]\displaystyle{ Q }[/math].
Break condition: [math]\displaystyle{ Q=\emptyset }[/math].
Induction basis
Abstract view: The start node is seen, no other node is seen. The start node is the only element of [math]\displaystyle{ Q }[/math]. The output sequence is empty.
Implementation: Obvious.
Proof: Obvious.
Induction step
Abstract view:
- Extract the first element [math]\displaystyle{ v }[/math] from [math]\displaystyle{ Q }[/math].
- For each outgoing arc [math]\displaystyle{ (v,w) }[/math] of [math]\displaystyle{ v }[/math] such that [math]\displaystyle{ w }[/math] is not yet seen:
- Label [math]\displaystyle{ w }[/math] as seen.
- Append [math]\displaystyle{ w }[/math] to [math]\displaystyle{ Q }[/math].
- Add [math]\displaystyle{ w }[/math] to [math]\displaystyle{ Q }[/math].
Implementation: Obvious.
Proof: The variant is obviously fulfilled.
To see the invariant, first note that [math]\displaystyle{ v }[/math] has distance [math]\displaystyle{ k }[/math]. So, for every node [math]\displaystyle{ w }[/math] such that [math]\displaystyle{ (v,w)\in A }[/math], the distance of [math]\displaystyle{ w }[/math] is at most [math]\displaystyle{ k+1 }[/math]. We have to show: The distance of [math]\displaystyle{ w }[/math] is at least [math]\displaystyle{ k }[/math], and if there are nodes with distance [math]\displaystyle{ k+1 }[/math] in [math]\displaystyle{ Q }[/math], the distance of [math]\displaystyle{ w }[/math] is [math]\displaystyle{ k+1 }[/math].
First suppose for a contradiction that the disance of [math]\displaystyle{ w }[/math] is less than [math]\displaystyle{ k }[/math].
Correctness
It is easy to see that each operation of the algorithm is well defined. Due to the variant, the loop terminates after a finite number of steps.
Complexity
Statement: The asymptotic complexity is in [math]\displaystyle{ \Theta(|V|+|A|) }[/math] in the best and worst case.
Proof:
Pseudocode
BFS(G,s)
1 for each vertex u ∈ G.V - {s}
2 u.color = WHITE
3 u.d = ∞
4 u.π = NIL
5 s.color = GRAY
6 s.d = 0
7 s.π = NIL
8 Q = Ø
9 ENQUE(Q, s)
10 while Q ≠ Ø
11 u = DEQUEUE(Q)
12 for each v ∈ G.Adj[u]
13 if v.color == WHITE
14 v.color = GRAY
15 v.d = u.d + 1
16 v.π = u
17 ENQUEUE(Q, v)
18 u.color = BLACK