Maximum-weight matching: Difference between revisions

From Algowiki
Jump to navigation Jump to search
No edit summary
 
(15 intermediate revisions by the same user not shown)
Line 8: Line 8:
'''Input:'''
'''Input:'''
# An undirected graph <math>G=(V,E)</math>.
# An undirected graph <math>G=(V,E)</math>.
# A real-valued '''weight''' <math>w(e)</math> for each edge <math>e\in E</math>.
# A strictly positive '''weight''' <math>c(e)</math> for each edge <math>e\in E</math>.


'''Output:'''
'''Output:'''
A matching <math>M</math> in <math>G</math> such that <math>\sum_{e\in M'}w(e)\leq\sum_{e\in M}w(e)</math> for any other matching <math>M'</math> in <math>G</math>.
A matching <math>M</math> in <math>G</math> such that <math>\sum_{e\in M'}c(e)\leq\sum_{e\in M}c(e)</math> for any other matching <math>M'</math> in <math>G</math>.


== Remark ==
== Known algorithms ==


# The maximum-weight matching problem restricted to [[Basic graph definitions#Bipartite and k-partite graphs|bipartite]] graphs is usually called the '''assignment problem'''.
# The [[Hungarian method]] for [[Basic graph definitions#Complete graphs|complete]] [[Basic graph definitions#Bipartite and k-partite graphs|bipartite]] graphs.
 
== Remarks ==
 
# The maximum-weight matching problem restricted to [[Basic graph definitions#Bipartite and k-partite graphs|bipartite graphs]] is usually called the '''assignment problem'''.
# If the graph is bipartite, <math>G=(V_1\dot\cup V_2,E)</math> and <math>|V_1|=|V_2|</math>, the [[Matchings in graphs|perfect matching]] of ''minimum'' weight can be found as follows:
## Let <math>C:=\max\{c(e)|e\in E\}</math>.
## For each edge <math>e\in E</math>, set <math>c'(e):=C-c(e)</math>.
## Find a ''maximum''-weight matching with respect to <math>c'</math>.
# If <math>|V_1|\neq|V_2|</math>, say <math>|V_1|<|V_2|</math>, we may simply add as many as <math>|V_2|-|V_1|</math> nodes to <math>V_1</math> and for each new node <math>v</math> one edge <math>\{v,w\}</math> to every node <math>w\in V_2</math> with:
## <math>c(\{v,w\}):=0</math> if a maximum-weight matching is to be computed.
## <math>c(\{v,w\})</math> sufficiently large if a minimum-weight perfect matching is to be computed.

Latest revision as of 17:37, 6 December 2014

Basic definitions

  1. Basic graph definitions
  2. Matchings in graphs

Definition

Input:

  1. An undirected graph [math]\displaystyle{ G=(V,E) }[/math].
  2. A strictly positive weight [math]\displaystyle{ c(e) }[/math] for each edge [math]\displaystyle{ e\in E }[/math].

Output: A matching [math]\displaystyle{ M }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ \sum_{e\in M'}c(e)\leq\sum_{e\in M}c(e) }[/math] for any other matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math].

Known algorithms

  1. The Hungarian method for complete bipartite graphs.

Remarks

  1. The maximum-weight matching problem restricted to bipartite graphs is usually called the assignment problem.
  2. If the graph is bipartite, [math]\displaystyle{ G=(V_1\dot\cup V_2,E) }[/math] and [math]\displaystyle{ |V_1|=|V_2| }[/math], the perfect matching of minimum weight can be found as follows:
    1. Let [math]\displaystyle{ C:=\max\{c(e)|e\in E\} }[/math].
    2. For each edge [math]\displaystyle{ e\in E }[/math], set [math]\displaystyle{ c'(e):=C-c(e) }[/math].
    3. Find a maximum-weight matching with respect to [math]\displaystyle{ c' }[/math].
  3. If [math]\displaystyle{ |V_1|\neq|V_2| }[/math], say [math]\displaystyle{ |V_1|\lt |V_2| }[/math], we may simply add as many as [math]\displaystyle{ |V_2|-|V_1| }[/math] nodes to [math]\displaystyle{ V_1 }[/math] and for each new node [math]\displaystyle{ v }[/math] one edge [math]\displaystyle{ \{v,w\} }[/math] to every node [math]\displaystyle{ w\in V_2 }[/math] with:
    1. [math]\displaystyle{ c(\{v,w\}):=0 }[/math] if a maximum-weight matching is to be computed.
    2. [math]\displaystyle{ c(\{v,w\}) }[/math] sufficiently large if a minimum-weight perfect matching is to be computed.