Negative cycle-canceling: Difference between revisions

From Algowiki
Jump to navigation Jump to search
 
(13 intermediate revisions by one other user not shown)
Line 15: Line 15:
== Induction basis ==
== Induction basis ==


'''Abstract view:''' Start with an arbitrary feasible flow, for example, the zero flow.
'''Abstract view:''' Start with an arbitrary feasible flow.
 
'''Implementation:'''
The problem to find a feasible flow is reduced to a [[Max-Flow Problems|max-flow problem]] as follows:
# Insert new vertices, <math>s</math> and <math>t</math>.
# For each original node <math>v\in V</math> such that <math>b[v]>0</math>: Insert an arc <math>(s,v)</math> with capacity <math>b[v]</math>.
# For each original node <math>v\in V</math> such that <math>b[v]<0</math>: Insert an arc <math>(v,t)</math> with capacity <math>-b[v]</math>.
# Determine a [[Max-Flow Problems|maximum flow]] from <math>s</math> to <math>t</math> in the extended graph (cost factors and balance values are disregarded).
# If all arcs <math>(s,v)</math> are [[Basic flow definitions#Flow-augmenting paths and saturated arcs|saturated]], return the restriction of this flow to the original arcs.
# Otherwise, the original [[Min-cost flow problem|min-cost flow]] instance is infeasible.
 
'''Proof:'''
If the arcs leaving <math>s</math> (or, equivalently, the arcs entering <math>t</math>) are saturated, the flow balances at all original nodes are obviously fulfilled in the original [[Min-cost flow problem|min-cost flow]] instance. On the other hand, if a feasible flow exists at all in the original [[Min-cost flow problem|min-cost flow]] instance, its extension to the inserted arcs yields a flow that saturates all arcs leaving <math>s</math>. Therefore, if the ''maximum'' flow in the extended flow network does not saturate all of these arcs, the original instance is infeasible.


== Induction step ==
== Induction step ==


'''Abstract view:'''
'''Abstract view:'''
# Find a [[Basics of shortest paths#Path length and distances|cycle of negative cost]] in the [[Basic flow definitions#Residual network|residual network]].
# Find a [[Basics of shortest paths#Path lengths and distances|cycle of negative cost]] in the [[Basic flow definitions#Residual network|residual network]].
# [[Basic flow definitions#Augmenting along a path|Augment]] the flow along this cycle up to saturation.
# [[Basic flow definitions#Augmenting along a path|Augment]] the flow along this cycle up to saturation.


'''Implementation of step 1:'''
'''Implementation of step 1:'''
# Run an [[All pairs shortest paths|all-pairs shortest-paths]] algorithm on the [[Basic flow definitions#Residual network|residual network]] <math>(G_f,u_f)</math>, where for each arc <math>(v,w)\in A</math>, the length of <math>(v,w)</math> is <math>c(v,w)</math> and the length of  <math>(w,v)</math> is <math>-c(w,v)</math> (provided <math>(v,w)\in A_f</math> and <math>(w,v)\in A_f</math>, respectively).
# Run an [[All pairs shortest paths|all-pairs shortest-paths]] algorithm on the [[Basic flow definitions#Residual network|residual network]] <math>(G_f,u_f)</math>, where for each arc <math>(v,w)\in A</math>, the length of <math>(v,w)</math> is <math>c(v,w)</math> in case <math>(v,w)\in A_f</math>, and the length of  <math>(w,v)</math> is <math>-c(v,w)</math> in case <math>(w,v)\in A_f</math>. Let the algorithm [[Basics of shortest paths#Constructing a shortest-paths arborescence or a negative cycle|construct an arborescence or a negative cycle]].
# If the distance <math>v\rightarrow v</math> is 0 for all <math>v\in V</math>, the break condition applies.
# If the distance <math>v\rightarrow v</math> is 0 for all <math>v\in V</math>, the break condition applies.
# Otherwise (that is, the distances <math>v\rightarrow v</math> of some nodes <math>v\in V</math> are negative): Reconstruct one negative cycle <math>C</math>.
# Otherwise (that is, the distances <math>v\rightarrow v</math> of some nodes <math>v\in V</math> are negative): Reconstruct one negative cycle <math>C</math>.
Line 32: Line 44:


== Correctness ==
== Correctness ==
In the following, arithmetic operations and comparisons of flows are arc-wise. For a [[Basic graph definitions#Cycles|generalized cycle]] <math>C</math> and <math>\varepsilon>0</math>, adding <math>\varepsilon\cdot C</math> to a flow <math>f</math> means that <math>f</math> is [[Basic flow definitions#Augmenting along a path|augmented]] along <math>C</math> by <math>\varepsilon</math>.


First we will show a general fact: For two feasible flows, <math>f_1</math> and <math>f_2</math>, there are [[basic graph definitions#Cycles|generalized cycles]] <math>C_1,\ldots,C_k</math> in <math>G</math> and <math>\varepsilon_1,\ldots,\varepsilon_k>0</math> such that:
First we will show a general fact: For two feasible flows, <math>f_1</math> and <math>f_2</math>, there are [[basic graph definitions#Cycles|generalized cycles]] <math>C_1,\ldots,C_k</math> in <math>G</math> and <math>\varepsilon_1,\ldots,\varepsilon_k>0</math> such that:
Line 37: Line 51:
# '''Consistency:''' For each arc <math>a\in A</math> and <math>i,j\in\{1,\ldots,k\}</math>: If <math>a</math> belongs to <math>C_i</math> and <math>C_j</math>, then <math>a</math> is a forward arc on both cycles, or <math>a</math> is a backward arc in both cycles.
# '''Consistency:''' For each arc <math>a\in A</math> and <math>i,j\in\{1,\ldots,k\}</math>: If <math>a</math> belongs to <math>C_i</math> and <math>C_j</math>, then <math>a</math> is a forward arc on both cycles, or <math>a</math> is a backward arc in both cycles.


To prove that, we apply an induction on the number <math>d</math> of arcs on which <math>f_1</math> and <math>f_2</math> differ. For <math>d=0</math>, nothing is to show. So suppose <math>d>0</math>. Let <math>(v_1,v_2)</math> be an arc on which <math>f_1</math> and <math>f_2</math> differ, say <math>f_1(v_1,v_2)<f_2(v_1,v_2)</math>. Then there is either an arc <math>(v_2,v_3)</math> with <math>f_1(v_2,v_3)<f_2(v_2,v_3)</math> or an arc <math>(v_3,v_2)</math> with <math>f_1(v_3,v_2)>f_2(v_3,v_2)</math>. This argument may be continued, so we obtain a sequence <math>v_1,v_2,v_3,v_4,\ldots</math> such that for all <math>i</math>, there is <math>(v_i,v_{i+1})</math> with <math>f_1(v_i,v_{i+1})<f_2(v_i,v_{i+1})</math> or <math>(v_{i+1},v_i)</math> with <math>f_1(v_{i+1},v_i)<f_2(v_{i+1},v_i)</math>. Since the number of nodes is finite, there must be <math>i</math> and <math>j</math> such that <math>v_i=v_j</math>. Therefore,  a generalized cycle <math>C_1</math> is closed such that <math>f_1(a)<f_2(a)\leq u(a)</math> on each forward arc and <math>f_1(a)>f_2(a)\geq 0</math> on each backward arc. In particular, there is <math>\varepsilon_1>0</math> such that <math>f_1+\varepsilon_1\cdot C_1</math> is feasible. If <math>\varepsilon_1</math> is chosen maximal, <math>f_1+\varepsilon_1\cdot C_1</math> agrees one at least one more arc with <math>f_2</math> than <math>f_1</math>. Now the induction hypothesis proves the general fact.
To prove this general fact, we apply an induction on the number <math>d</math> of arcs on which <math>f_1</math> and <math>f_2</math> differ. For <math>d=0</math>, it is <math>f_1=f_2</math>, so the empty set of cycles (<math>k=0</math>) describes the difference between <math>f_1</math> and <math>f_2</math>.
 
So suppose <math>d>0</math>. Let <math>(v_1,v_2)</math> be an arc on which <math>f_1</math> and <math>f_2</math> differ, say <math>f_1(v_1,v_2)<f_2(v_1,v_2)</math>. Then there is either an arc <math>(v_2,v_3)</math> with <math>f_1(v_2,v_3)<f_2(v_2,v_3)</math> or an arc <math>(v_3,v_2)</math> with <math>f_1(v_3,v_2)>f_2(v_3,v_2)</math>. This argument may be continued, so we obtain a sequence <math>v_1,v_2,v_3,v_4,\ldots</math> such that for all <math>i=1,2,3,\ldots</math>, there is <math>(v_i,v_{i+1})</math> with <math>f_1(v_i,v_{i+1})<f_2(v_i,v_{i+1})</math> or <math>(v_{i+1},v_i)</math> with <math>f_1(v_{i+1},v_i)<f_2(v_{i+1},v_i)</math>. Since the number of nodes is finite, there must be <math>i</math> and <math>j</math> such that <math>v_i=v_j</math>. Therefore,  a generalized cycle <math>C_1</math> is closed such that <math>f_1(a)<f_2(a)\leq u(a)</math> on each forward arc and <math>f_1(a)>f_2(a)\geq 0</math> on each backward arc. In particular, there is <math>\varepsilon_1>0</math> such that <math>f_1+\varepsilon_1\cdot C_1</math> is feasible. If <math>\varepsilon_1</math> is chosen maximal, <math>f_1+\varepsilon_1\cdot C_1</math> agrees one at least one more arc with <math>f_2</math> than <math>f_1</math>. Now the induction hypothesis proves the general fact.


Finally, we are in a position to prove correctness of the algorithm. For  that, we have to show that a feasible flow is minimum if it admits no negative cycle. So assume a feasible flow <math>f</math> is ''not'' minimum. Then there is a feasible flow <math>\tilde{f}</math> such that <math>c(\tilde{f})<c(f)</math>. There are <math>C_1,\ldots,C_k</math> and <math>\varepsilon_1,\ldots,\varepsilon_k</math> as described above. Since <math>c(\tilde{f})<c(f)</math>, at least one of the cycles must be a negative one,say <math>C_i</math>. It is easy to see that the cycles may be permuted in the decomposition, so <math>f+\varepsilon_i\cdot C_i</math> is feasible (consistency is essential for that). This proves the claim.
Finally, we are in a position to prove correctness of the algorithm. For  that, we have to show that a feasible flow is minimum if it admits no negative cycle. So assume a feasible flow <math>f</math> is ''not'' minimum. Then there is a feasible flow <math>\tilde{f}</math> such that <math>c(\tilde{f})<c(f)</math>. There are <math>C_1,\ldots,C_k</math> and <math>\varepsilon_1,\ldots,\varepsilon_k</math> as described above. Since <math>c(\tilde{f})<c(f)</math>, at least one of the cycles must be a negative one,say <math>C_i</math>. Since the cycles are consistent, they may be permuted in the decomposition, so <math>f+\varepsilon_i\cdot C_i</math> is feasible.


== Complexity ==
== Complexity ==
Line 47: Line 63:


'''Proof:'''
'''Proof:'''
The initial flow has cost
The initial flow has a total cost of at most <math>C\cdot U</math>, and the min-cost flow has a total cost of at least <math>-C\cdot U</math>. Therefore, the number of iterations is in <math>\mathcal{O}(C\cdot U)</math>. The complexity of an iteration is dominated by the all-pairs shortest-paths algorithm.

Latest revision as of 15:18, 5 February 2015

Abstract view

Algorithmic problem: Min-cost flow problem

Type of algorithm: loop

Invariant:

  1. The flow is feasible.
  2. If all upper bounds are integral, the flow is integral as well.

Variant: The cost of the flow decreases.

Break condition: There is no more negative cycle in the residual network.

Induction basis

Abstract view: Start with an arbitrary feasible flow.

Implementation: The problem to find a feasible flow is reduced to a max-flow problem as follows:

  1. Insert new vertices, [math]\displaystyle{ s }[/math] and [math]\displaystyle{ t }[/math].
  2. For each original node [math]\displaystyle{ v\in V }[/math] such that [math]\displaystyle{ b[v]\gt 0 }[/math]: Insert an arc [math]\displaystyle{ (s,v) }[/math] with capacity [math]\displaystyle{ b[v] }[/math].
  3. For each original node [math]\displaystyle{ v\in V }[/math] such that [math]\displaystyle{ b[v]\lt 0 }[/math]: Insert an arc [math]\displaystyle{ (v,t) }[/math] with capacity [math]\displaystyle{ -b[v] }[/math].
  4. Determine a maximum flow from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] in the extended graph (cost factors and balance values are disregarded).
  5. If all arcs [math]\displaystyle{ (s,v) }[/math] are saturated, return the restriction of this flow to the original arcs.
  6. Otherwise, the original min-cost flow instance is infeasible.

Proof: If the arcs leaving [math]\displaystyle{ s }[/math] (or, equivalently, the arcs entering [math]\displaystyle{ t }[/math]) are saturated, the flow balances at all original nodes are obviously fulfilled in the original min-cost flow instance. On the other hand, if a feasible flow exists at all in the original min-cost flow instance, its extension to the inserted arcs yields a flow that saturates all arcs leaving [math]\displaystyle{ s }[/math]. Therefore, if the maximum flow in the extended flow network does not saturate all of these arcs, the original instance is infeasible.

Induction step

Abstract view:

  1. Find a cycle of negative cost in the residual network.
  2. Augment the flow along this cycle up to saturation.

Implementation of step 1:

  1. Run an all-pairs shortest-paths algorithm on the residual network [math]\displaystyle{ (G_f,u_f) }[/math], where for each arc [math]\displaystyle{ (v,w)\in A }[/math], the length of [math]\displaystyle{ (v,w) }[/math] is [math]\displaystyle{ c(v,w) }[/math] in case [math]\displaystyle{ (v,w)\in A_f }[/math], and the length of [math]\displaystyle{ (w,v) }[/math] is [math]\displaystyle{ -c(v,w) }[/math] in case [math]\displaystyle{ (w,v)\in A_f }[/math]. Let the algorithm construct an arborescence or a negative cycle.
  2. If the distance [math]\displaystyle{ v\rightarrow v }[/math] is 0 for all [math]\displaystyle{ v\in V }[/math], the break condition applies.
  3. Otherwise (that is, the distances [math]\displaystyle{ v\rightarrow v }[/math] of some nodes [math]\displaystyle{ v\in V }[/math] are negative): Reconstruct one negative cycle [math]\displaystyle{ C }[/math].

Proof: The invariant and the variant are obviously fulfilled.

Correctness

In the following, arithmetic operations and comparisons of flows are arc-wise. For a generalized cycle [math]\displaystyle{ C }[/math] and [math]\displaystyle{ \varepsilon\gt 0 }[/math], adding [math]\displaystyle{ \varepsilon\cdot C }[/math] to a flow [math]\displaystyle{ f }[/math] means that [math]\displaystyle{ f }[/math] is augmented along [math]\displaystyle{ C }[/math] by [math]\displaystyle{ \varepsilon }[/math].

First we will show a general fact: For two feasible flows, [math]\displaystyle{ f_1 }[/math] and [math]\displaystyle{ f_2 }[/math], there are generalized cycles [math]\displaystyle{ C_1,\ldots,C_k }[/math] in [math]\displaystyle{ G }[/math] and [math]\displaystyle{ \varepsilon_1,\ldots,\varepsilon_k\gt 0 }[/math] such that:

  1. Decomposition of [math]\displaystyle{ f_2-f_1 }[/math]: It is [math]\displaystyle{ f_2=f_1+\varepsilon_1\cdot C_1+\cdots+\varepsilon_k\cdot C_k }[/math].
  2. Consistency: For each arc [math]\displaystyle{ a\in A }[/math] and [math]\displaystyle{ i,j\in\{1,\ldots,k\} }[/math]: If [math]\displaystyle{ a }[/math] belongs to [math]\displaystyle{ C_i }[/math] and [math]\displaystyle{ C_j }[/math], then [math]\displaystyle{ a }[/math] is a forward arc on both cycles, or [math]\displaystyle{ a }[/math] is a backward arc in both cycles.

To prove this general fact, we apply an induction on the number [math]\displaystyle{ d }[/math] of arcs on which [math]\displaystyle{ f_1 }[/math] and [math]\displaystyle{ f_2 }[/math] differ. For [math]\displaystyle{ d=0 }[/math], it is [math]\displaystyle{ f_1=f_2 }[/math], so the empty set of cycles ([math]\displaystyle{ k=0 }[/math]) describes the difference between [math]\displaystyle{ f_1 }[/math] and [math]\displaystyle{ f_2 }[/math].

So suppose [math]\displaystyle{ d\gt 0 }[/math]. Let [math]\displaystyle{ (v_1,v_2) }[/math] be an arc on which [math]\displaystyle{ f_1 }[/math] and [math]\displaystyle{ f_2 }[/math] differ, say [math]\displaystyle{ f_1(v_1,v_2)\lt f_2(v_1,v_2) }[/math]. Then there is either an arc [math]\displaystyle{ (v_2,v_3) }[/math] with [math]\displaystyle{ f_1(v_2,v_3)\lt f_2(v_2,v_3) }[/math] or an arc [math]\displaystyle{ (v_3,v_2) }[/math] with [math]\displaystyle{ f_1(v_3,v_2)\gt f_2(v_3,v_2) }[/math]. This argument may be continued, so we obtain a sequence [math]\displaystyle{ v_1,v_2,v_3,v_4,\ldots }[/math] such that for all [math]\displaystyle{ i=1,2,3,\ldots }[/math], there is [math]\displaystyle{ (v_i,v_{i+1}) }[/math] with [math]\displaystyle{ f_1(v_i,v_{i+1})\lt f_2(v_i,v_{i+1}) }[/math] or [math]\displaystyle{ (v_{i+1},v_i) }[/math] with [math]\displaystyle{ f_1(v_{i+1},v_i)\lt f_2(v_{i+1},v_i) }[/math]. Since the number of nodes is finite, there must be [math]\displaystyle{ i }[/math] and [math]\displaystyle{ j }[/math] such that [math]\displaystyle{ v_i=v_j }[/math]. Therefore, a generalized cycle [math]\displaystyle{ C_1 }[/math] is closed such that [math]\displaystyle{ f_1(a)\lt f_2(a)\leq u(a) }[/math] on each forward arc and [math]\displaystyle{ f_1(a)\gt f_2(a)\geq 0 }[/math] on each backward arc. In particular, there is [math]\displaystyle{ \varepsilon_1\gt 0 }[/math] such that [math]\displaystyle{ f_1+\varepsilon_1\cdot C_1 }[/math] is feasible. If [math]\displaystyle{ \varepsilon_1 }[/math] is chosen maximal, [math]\displaystyle{ f_1+\varepsilon_1\cdot C_1 }[/math] agrees one at least one more arc with [math]\displaystyle{ f_2 }[/math] than [math]\displaystyle{ f_1 }[/math]. Now the induction hypothesis proves the general fact.

Finally, we are in a position to prove correctness of the algorithm. For that, we have to show that a feasible flow is minimum if it admits no negative cycle. So assume a feasible flow [math]\displaystyle{ f }[/math] is not minimum. Then there is a feasible flow [math]\displaystyle{ \tilde{f} }[/math] such that [math]\displaystyle{ c(\tilde{f})\lt c(f) }[/math]. There are [math]\displaystyle{ C_1,\ldots,C_k }[/math] and [math]\displaystyle{ \varepsilon_1,\ldots,\varepsilon_k }[/math] as described above. Since [math]\displaystyle{ c(\tilde{f})\lt c(f) }[/math], at least one of the cycles must be a negative one,say [math]\displaystyle{ C_i }[/math]. Since the cycles are consistent, they may be permuted in the decomposition, so [math]\displaystyle{ f+\varepsilon_i\cdot C_i }[/math] is feasible.

Complexity

Statement: If all upper bounds are integral, the asymptotic complexity is in [math]\displaystyle{ \mathcal{O}(T\cdot C\cdot U) }[/math], where [math]\displaystyle{ T }[/math] is the asymptotic complexity of the all-pairs shortest-paths problem, [math]\displaystyle{ C=\sum_{a\in A}|c(a)| }[/math], and [math]\displaystyle{ U=\max\{u(a)|a\in A\} }[/math].

Proof: The initial flow has a total cost of at most [math]\displaystyle{ C\cdot U }[/math], and the min-cost flow has a total cost of at least [math]\displaystyle{ -C\cdot U }[/math]. Therefore, the number of iterations is in [math]\displaystyle{ \mathcal{O}(C\cdot U) }[/math]. The complexity of an iteration is dominated by the all-pairs shortest-paths algorithm.