Merge: Difference between revisions
(16 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
[[Category:Algorithm]] | |||
[[Category:Auxiliary Algorithm]] | |||
== General Information == | == General Information == | ||
'''Algorithmic problem:''' [[Merging two sorted sequences]] | |||
'''Type of algorithm:''' loop | |||
'''Auxiliary data:''' There are two current positions: <math>i_1 \in \{0,\dots,|S_1|\}</math> and <math>i_2 \in \{0,\dots,|S_2|\}</math> | |||
. | . | ||
== Abstract View == | == Abstract View == | ||
'''Invariant:''' Before and after each iteration prior to termination: | |||
# <math>S</math> consists exactly of all elements <math> S_1[1],\dots,S_1[i_1]</math> and <math> S_2[1],\dots,S_2[i_2]</math>. | # <math>S</math> consists exactly of all elements <math> S_1[1],\dots,S_1[i_1]</math> and <math> S_2[1],\dots,S_2[i_2]</math>. | ||
# <math>S</math> is sorted according to the comparison on <math>S_1</math> and <math>S_2</math>. | # <math>S</math> is sorted according to the comparison on <math>S_1</math> and <math>S_2</math>. | ||
'''Variant:''' <math>i_1 + i_2</math> increases by <math>1</math> (prior to termination); neither <math>i_1</math> nor <math>i_2</math> decreases. | |||
'''Break condition:''' <math>i_1 = |S_1|</math> or <math>i_2 = |S_2|</math>. | |||
== Induction Basis == | == Induction Basis == | ||
'''Abstract view:''' <math>i_1 := 0</math> and <math>i_2 := 0</math>. | |||
'''Implementation:''' Obvious. | |||
'''Proof:''' Nothing to show. | |||
== Induction Step == | == Induction Step == | ||
'''Abstract view:''' | |||
# If <math>i_1 = |S_1|</math>, append <math>S_2[i_2 + 1],\ldots,S_2[|S_2|]</math> at the end of <math>S</math> (in this order) and terminate the algorithm. | |||
# Otherwise, if <math>i_2 = |S_2|</math>, append <math>S_1[i_1 + 1],\ldots,S_1[|S_1|]</math> at the end of <math>S</math> (in this order) and terminate the algorithm. | |||
# Otherwise, if <math>S_1[i_1 +1] < S_2[i_2 +1]</math>, append <math>S_1[i_1 +1]</math> at the of <math>S</math> and increase <math>i_1</math> by <math>1</math>. | |||
# Otherwise, append <math>S_2[i_2 +1]</math> at the of <math>S</math> and increase <math>i_2</math> by <math>1</math>. | |||
'''Implementation:''' Obvious. | |||
'''Correctness:''' Obvious. | |||
== Complexity == | == Complexity == | ||
'''Statement:''' The complexity is in <math>\Theta(T\cdot(|S_1| + |S_2|))</math> in the best and worst case, where <math>T</math> is the complexity of the comparison. | |||
'''Proof:''' Obvious. | |||
Latest revision as of 12:14, 18 September 2015
General Information
Algorithmic problem: Merging two sorted sequences
Type of algorithm: loop
Auxiliary data: There are two current positions: [math]\displaystyle{ i_1 \in \{0,\dots,|S_1|\} }[/math] and [math]\displaystyle{ i_2 \in \{0,\dots,|S_2|\} }[/math] .
Abstract View
Invariant: Before and after each iteration prior to termination:
- [math]\displaystyle{ S }[/math] consists exactly of all elements [math]\displaystyle{ S_1[1],\dots,S_1[i_1] }[/math] and [math]\displaystyle{ S_2[1],\dots,S_2[i_2] }[/math].
- [math]\displaystyle{ S }[/math] is sorted according to the comparison on [math]\displaystyle{ S_1 }[/math] and [math]\displaystyle{ S_2 }[/math].
Variant: [math]\displaystyle{ i_1 + i_2 }[/math] increases by [math]\displaystyle{ 1 }[/math] (prior to termination); neither [math]\displaystyle{ i_1 }[/math] nor [math]\displaystyle{ i_2 }[/math] decreases.
Break condition: [math]\displaystyle{ i_1 = |S_1| }[/math] or [math]\displaystyle{ i_2 = |S_2| }[/math].
Induction Basis
Abstract view: [math]\displaystyle{ i_1 := 0 }[/math] and [math]\displaystyle{ i_2 := 0 }[/math].
Implementation: Obvious.
Proof: Nothing to show.
Induction Step
Abstract view:
- If [math]\displaystyle{ i_1 = |S_1| }[/math], append [math]\displaystyle{ S_2[i_2 + 1],\ldots,S_2[|S_2|] }[/math] at the end of [math]\displaystyle{ S }[/math] (in this order) and terminate the algorithm.
- Otherwise, if [math]\displaystyle{ i_2 = |S_2| }[/math], append [math]\displaystyle{ S_1[i_1 + 1],\ldots,S_1[|S_1|] }[/math] at the end of [math]\displaystyle{ S }[/math] (in this order) and terminate the algorithm.
- Otherwise, if [math]\displaystyle{ S_1[i_1 +1] \lt S_2[i_2 +1] }[/math], append [math]\displaystyle{ S_1[i_1 +1] }[/math] at the of [math]\displaystyle{ S }[/math] and increase [math]\displaystyle{ i_1 }[/math] by [math]\displaystyle{ 1 }[/math].
- Otherwise, append [math]\displaystyle{ S_2[i_2 +1] }[/math] at the of [math]\displaystyle{ S }[/math] and increase [math]\displaystyle{ i_2 }[/math] by [math]\displaystyle{ 1 }[/math].
Implementation: Obvious.
Correctness: Obvious.
Complexity
Statement: The complexity is in [math]\displaystyle{ \Theta(T\cdot(|S_1| + |S_2|)) }[/math] in the best and worst case, where [math]\displaystyle{ T }[/math] is the complexity of the comparison.
Proof: Obvious.