Pivot partitioning by scanning: Difference between revisions
(20 intermediate revisions by 2 users not shown) | |||
Line 11: | Line 11: | ||
== Abstract View == | == Abstract View == | ||
'''Invariant:''' | '''Invariant:''' | ||
# The values of <math>m_1</math> and <math>m_2</math> only depend on the input sequence and are, hence, constant throughout the loop. More specifically, in | # The values of <math>m_1</math> and <math>m_2</math> only depend on the input sequence <math>S</math> and are, hence, constant throughout the loop. More specifically, in <math>S</math> there are | ||
## <math>m_1-1</math> elements less than <math>p</math>, | ## <math>m_1-1</math> elements less than <math>p</math>, | ||
## <math>m_2-m_1</math> elements equal to <math>p</math>, and | ## <math>m_2-m_1</math> elements equal to <math>p</math>, and | ||
Line 19: | Line 19: | ||
## <math>S[j] <p</math> for <math> j \in \{1,...,i_1-1\}</math>; if <math>i_1 < m_1</math>, it is <math>S[i_1] \nless p</math>; | ## <math>S[j] <p</math> for <math> j \in \{1,...,i_1-1\}</math>; if <math>i_1 < m_1</math>, it is <math>S[i_1] \nless p</math>; | ||
## <math>S[j] =p</math> for <math> j \in\{m_1,...,i_2-1\}</math>; if <math>i_2 < m_2</math>, it is <math>S[i_2] \ne p</math>; | ## <math>S[j] =p</math> for <math> j \in\{m_1,...,i_2-1\}</math>; if <math>i_2 < m_2</math>, it is <math>S[i_2] \ne p</math>; | ||
## <math>S[j] >p</math> for <math> j \in \{m_2,...,i_3-1\}</math>; if <math>i_3 \le | ## <math>S[j] >p</math> for <math> j \in \{m_2,...,i_3-1\}</math>; if <math>i_3 \le n</math>, it is <math>S[i_3] \ngtr p</math>. | ||
'''Variant:''' At least one of <math>i_1,i_2</math>, and <math>i_3</math> is increased by at least <math>1</math>, none of them is decreased. | '''Variant:''' At least one of <math>i_1,i_2</math>, and <math>i_3</math> is increased by at least <math>1</math>, none of them is decreased. | ||
'''Break condition:''' It is <math>i_1=m_1, i_2=m_2</math> and <math>i_3 = n+1</math> | '''Break condition:''' It is <math>i_1=m_1, i_2=m_2</math> and <math>i_3 = n+1</math>. | ||
== Induction basis == | == Induction basis == | ||
Line 32: | Line 32: | ||
# Set <math>m_1:=1</math> . | # Set <math>m_1:=1</math> . | ||
# For <math>j \in {1,...,n}</math>: If <math>S[j]<p</math> increase <math>m_1</math> by <math>1</math>. | # For <math>j \in {1,...,n}</math>: If <math>S[j]<p</math> increase <math>m_1</math> by <math>1</math>. | ||
# Set <math>m_2:m_1</math> | # Set <math>m_2:=m_1</math>. | ||
# For <math>j \in {1,...,n}</math>: If <math>S[j]=p</math> increase <math>m_2</math> by <math>1</math>. | # For <math>j \in {1,...,n}</math>: If <math>S[j]=p</math> increase <math>m_2</math> by <math>1</math>. | ||
# <math>i_1:=1</math>. | # <math>i_1:=1</math>. | ||
# <math>i_2:=m_1</math>. | # <math>i_2:=m_1</math>. | ||
# <math>i_3:=m_2</math>. | # <math>i_3:=m_2</math>. | ||
# While <math>i_1<m_1</math> and <math>S[ | # While <math>i_1<m_1</math> and <math>S[i_1]<p</math>, set <math>i_1:=i_1+1</math>. | ||
# While <math>i_2<m_2</math> and <math>S[ | # While <math>i_2<m_2</math> and <math>S[i_2]=p</math> , set <math>i_2:=i_2+1</math>. | ||
# While <math>i_3<n+1</math> and <math>S[ | # While <math>i_3<n+1</math> and <math>S[i_3]>p</math>, set <math>i_3:=i_3+1</math> . | ||
'''Proof:''' Obvious. | '''Proof:''' Obvious. | ||
Line 45: | Line 45: | ||
'''Abstract view:''' | '''Abstract view:''' | ||
# If the algorithm is not done yet, identify two out of the three index pointers <math>i_1,i_2</math>, and <math>i_3</math>such that at least one of these two can be moved one step forward after a swap of the elements at these two positions. | # If the algorithm is not done yet, identify two out of the three index pointers <math>i_1,i_2</math>, and <math>i_3</math>such that at least one of these two can be moved one step forward after a swap of the elements at these two positions. | ||
# Then move each of <math>i_1,i_2</math>, and <math>i_3</math> forward as long as the invariant is not violated. | |||
'''Implementation:''' | '''Implementation:''' | ||
Line 54: | Line 55: | ||
### Swap <math>S[i_1]</math> and <math>S[i_2]</math>. | ### Swap <math>S[i_1]</math> and <math>S[i_2]</math>. | ||
### Set <math>i_2:=i_2+1</math> until <math>i_2=m_2</math> or else <math>S[i_2] \ne p</math>. | ### Set <math>i_2:=i_2+1</math> until <math>i_2=m_2</math> or else <math>S[i_2] \ne p</math>. | ||
## Otherwise (that is, <math>S[i_1]>p</math>): | ## Otherwise (that is, <math>S[i_1]>p</math>): | ||
### Swap <math>S[i_1]</math> and <math>S[i_3]</math>. | ### Swap <math>S[i_1]</math> and <math>S[i_3]</math>. | ||
###Set <math>i_3:=i_3+1</math> until <math>i_3=n+1</math> or else <math>S[i_3] \ngtr p</math>. | ###Set <math>i_3:=i_3+1</math> until <math>i_3=n+1</math> or else <math>S[i_3] \ngtr p</math>. | ||
## While | ## While <math>i_1<m_1</math> and <math>S[i_1]<p</math>: set <math>i_1:=i_1+1</math>. | ||
# Otherwise (that is, <math>i_1=m_1</math>): | # Otherwise (that is, <math>i_1=m_1</math>): | ||
## Swap <math>S[i_2]</math> and <math>S[i_3]</math>. | ## Swap <math>S[i_2]</math> and <math>S[i_3]</math>. | ||
## Set <math>i_2:=i_2+1</math> until <math>i_2= | ## Set <math>i_2:=i_2+1</math> until <math>i_2=m_2</math> or else <math>S[i_2] \ne p</math> . | ||
## Set <math>i_3:=i_3+1</math> until <math>i_3=n+1</math> or else <math>S[i_3] \ngtr p</math>. | ## Set <math>i_3:=i_3+1</math> until <math>i_3=n+1</math> or else <math>S[i_3] \ngtr p</math>. | ||
'''Correctness''': Due to the various "otherwise" clauses, all possible cases are covered. Therefore, it remains to show that the invariants are maintained in each of the considered cases. | '''Correctness''': Due to the various "otherwise" clauses, all possible cases are covered. Therefore, it remains to show that the invariants are maintained in each of the considered cases. | ||
As the values of | As the values of <math>m_1</math> and <math>m_2</math> are never changed after initialization, all three parts of the first invariant are trivially maintained. Since <math>i_1</math> (resp., <math>i_2</math>, <math>i_3</math>) is only increased in case <math>i_1<m_1</math> (resp., <math>i_2<m_2</math>, <math>i_3<n+1</math>), Invariant 2.1 is maintained as well. So, we will focus on Invariants 2.2-2.4. | ||
If Step 2 applies, maintenance of Invariants 2.2-2.4 might be obvious. So consider Step 3. If Step 3 applies, we know | If Step 2 applies, maintenance of Invariants 2.2-2.4 might be obvious. So consider Step 3. If Step 3 applies (<math>i_1=m_1</math>), the break condition is not yet met, so we know <math>i_2<m_2</math> or <math>i_3<n+1</math>, or both. Without loss of generality, assume <math>i_2<m_2</math> (the other case is mirror-symmetric). Invariant 2.3 implies <math>S[i_2]\neq p</math>, which amounts to <math>S[i_2]>p</math> in Step 3. So, not all elements <math>>p</math> are on the correct positions, which implies <math>i_3<n+1</math>. In summary, it is safe to apply Step 3. | ||
== Java Implementation == | |||
<syntaxhighlight lang="java"> | |||
//snipped from https://foo.algo.informatik.tu-darmstadt.de | |||
//preperated for Spec | |||
//AUTHOR: Thomas Lüdecke | |||
//30.05.2015 05:22 | git 4072e171 | |||
private List<Integer> list executePivotPartitioning(int pivot, int m1, int m2, List<Integer> list){ | |||
//init and save | |||
int i1 = 0; | |||
int i2 = m1; | |||
int i3 = m2; | |||
//int i = 0; //Iteration Counter | |||
//Inductionbase | |||
while(i1 < m1 && list.get(i1) < pivot){ | |||
i1++; | |||
} | |||
while(i2 < m2 && list.get(i2) == pivot){ | |||
i2++; | |||
} | |||
while(i3 <list.size() && list.get(i3) > pivot){ | |||
i3++; | |||
} | |||
//each Iteration is one induction step | |||
while(i1 < m1 || i2 < m2 || i3 < list.size()) { | |||
if(i1 < m1) { | |||
if(list.get(i1) == pivot) { | |||
swap(i1,i2, list); | |||
while(i2 < m2 && list.get(i2) == pivot){ | |||
i2++; | |||
} | |||
}else{ | |||
swap(i1,i3, list); | |||
while(i3 <list.size() && list.get(i3) > pivot){ | |||
i3++; | |||
} | |||
} | |||
while(i1 < m1 && list.get(i1) < pivot){ | |||
i1++; | |||
} | |||
//i++; //iteration end | |||
}else{ | |||
swap(i2,i3, list); | |||
while(i2 < m2 && list.get(i2) == pivot){ | |||
i2++; | |||
} | |||
while(i3 <list.size() && list.get(i3) > pivot){ | |||
i3++; | |||
} | |||
//i++; //iteration end | |||
} | |||
} | |||
return list; | |||
} | |||
//AUTHOR: Alexander Jandousek | |||
private void swap(int i1, int i2, List<Integer> list){ | |||
int temp = list.get(i1); | |||
list.set(i1, list.get(i2)); | |||
list.set(i2, temp); | |||
} | |||
//These methods are used to init m1 and m2 before calling executePivotPartitioning(...) | |||
//AUTHOR: Alexander Jandousek | |||
private int calcM1(int pivot, List<Integer> list){ | |||
int m1 = 0; | |||
for(int n : list){ | |||
m1 = (n < pivot)? m1+1: m1; | |||
} | |||
return m1; | |||
} | |||
//AUTHOR: Alexander Jandousek, Thomas Lüdecke | |||
private int calcM2(int pivot, List<Integer> list){ | |||
int m2 = calcM1(pivot,list); //not optimized | |||
for(int n : list){ | |||
m2 = (n == pivot)? m2+1: m2; | |||
} | |||
return m2; | |||
} | |||
</syntaxhighlight> |
Latest revision as of 08:30, 30 May 2015
Algorithmic problem: Pivot partioning
Prerequisites: None
Type of algorithm: loop
Auxiliary data: Five index pointers, [math]\displaystyle{ m_1,m_2,i_1,i_2,i_3 \in \mathbb N. }[/math]
Abstract View
Invariant:
- The values of [math]\displaystyle{ m_1 }[/math] and [math]\displaystyle{ m_2 }[/math] only depend on the input sequence [math]\displaystyle{ S }[/math] and are, hence, constant throughout the loop. More specifically, in [math]\displaystyle{ S }[/math] there are
- [math]\displaystyle{ m_1-1 }[/math] elements less than [math]\displaystyle{ p }[/math],
- [math]\displaystyle{ m_2-m_1 }[/math] elements equal to [math]\displaystyle{ p }[/math], and
- [math]\displaystyle{ n - m_2+1 }[/math] elements greater than [math]\displaystyle{ p }[/math].
- Before and after each iteration, it is:
- [math]\displaystyle{ 1 \le i_1 \le m_1 \le i_2 \le m_2 \le i_3 \le n+1 }[/math];
- [math]\displaystyle{ S[j] \lt p }[/math] for [math]\displaystyle{ j \in \{1,...,i_1-1\} }[/math]; if [math]\displaystyle{ i_1 \lt m_1 }[/math], it is [math]\displaystyle{ S[i_1] \nless p }[/math];
- [math]\displaystyle{ S[j] =p }[/math] for [math]\displaystyle{ j \in\{m_1,...,i_2-1\} }[/math]; if [math]\displaystyle{ i_2 \lt m_2 }[/math], it is [math]\displaystyle{ S[i_2] \ne p }[/math];
- [math]\displaystyle{ S[j] \gt p }[/math] for [math]\displaystyle{ j \in \{m_2,...,i_3-1\} }[/math]; if [math]\displaystyle{ i_3 \le n }[/math], it is [math]\displaystyle{ S[i_3] \ngtr p }[/math].
Variant: At least one of [math]\displaystyle{ i_1,i_2 }[/math], and [math]\displaystyle{ i_3 }[/math] is increased by at least [math]\displaystyle{ 1 }[/math], none of them is decreased.
Break condition: It is [math]\displaystyle{ i_1=m_1, i_2=m_2 }[/math] and [math]\displaystyle{ i_3 = n+1 }[/math].
Induction basis
Abstract view:
- Set [math]\displaystyle{ m_1 }[/math] and [math]\displaystyle{ m_2 }[/math] according to the loop invariant.
- Initialize [math]\displaystyle{ i_1,i_2 }[/math] and [math]\displaystyle{ i_3 }[/math].
Implementation:
- Set [math]\displaystyle{ m_1:=1 }[/math] .
- For [math]\displaystyle{ j \in {1,...,n} }[/math]: If [math]\displaystyle{ S[j]\lt p }[/math] increase [math]\displaystyle{ m_1 }[/math] by [math]\displaystyle{ 1 }[/math].
- Set [math]\displaystyle{ m_2:=m_1 }[/math].
- For [math]\displaystyle{ j \in {1,...,n} }[/math]: If [math]\displaystyle{ S[j]=p }[/math] increase [math]\displaystyle{ m_2 }[/math] by [math]\displaystyle{ 1 }[/math].
- [math]\displaystyle{ i_1:=1 }[/math].
- [math]\displaystyle{ i_2:=m_1 }[/math].
- [math]\displaystyle{ i_3:=m_2 }[/math].
- While [math]\displaystyle{ i_1\lt m_1 }[/math] and [math]\displaystyle{ S[i_1]\lt p }[/math], set [math]\displaystyle{ i_1:=i_1+1 }[/math].
- While [math]\displaystyle{ i_2\lt m_2 }[/math] and [math]\displaystyle{ S[i_2]=p }[/math] , set [math]\displaystyle{ i_2:=i_2+1 }[/math].
- While [math]\displaystyle{ i_3\lt n+1 }[/math] and [math]\displaystyle{ S[i_3]\gt p }[/math], set [math]\displaystyle{ i_3:=i_3+1 }[/math] .
Proof: Obvious.
Induction step
Abstract view:
- If the algorithm is not done yet, identify two out of the three index pointers [math]\displaystyle{ i_1,i_2 }[/math], and [math]\displaystyle{ i_3 }[/math]such that at least one of these two can be moved one step forward after a swap of the elements at these two positions.
- Then move each of [math]\displaystyle{ i_1,i_2 }[/math], and [math]\displaystyle{ i_3 }[/math] forward as long as the invariant is not violated.
Implementation:
- If [math]\displaystyle{ i_1=m_1 }[/math] and [math]\displaystyle{ i_2=m_2 }[/math] and [math]\displaystyle{ i_3=n+1 }[/math], terminate the algorithm and return [math]\displaystyle{ m_1,m_2 }[/math].
- If [math]\displaystyle{ i_1\lt m_1 }[/math] :
- If [math]\displaystyle{ S[i_1]=p }[/math]:
- Swap [math]\displaystyle{ S[i_1] }[/math] and [math]\displaystyle{ S[i_2] }[/math].
- Set [math]\displaystyle{ i_2:=i_2+1 }[/math] until [math]\displaystyle{ i_2=m_2 }[/math] or else [math]\displaystyle{ S[i_2] \ne p }[/math].
- Otherwise (that is, [math]\displaystyle{ S[i_1]\gt p }[/math]):
- Swap [math]\displaystyle{ S[i_1] }[/math] and [math]\displaystyle{ S[i_3] }[/math].
- Set [math]\displaystyle{ i_3:=i_3+1 }[/math] until [math]\displaystyle{ i_3=n+1 }[/math] or else [math]\displaystyle{ S[i_3] \ngtr p }[/math].
- While [math]\displaystyle{ i_1\lt m_1 }[/math] and [math]\displaystyle{ S[i_1]\lt p }[/math]: set [math]\displaystyle{ i_1:=i_1+1 }[/math].
- If [math]\displaystyle{ S[i_1]=p }[/math]:
- Otherwise (that is, [math]\displaystyle{ i_1=m_1 }[/math]):
- Swap [math]\displaystyle{ S[i_2] }[/math] and [math]\displaystyle{ S[i_3] }[/math].
- Set [math]\displaystyle{ i_2:=i_2+1 }[/math] until [math]\displaystyle{ i_2=m_2 }[/math] or else [math]\displaystyle{ S[i_2] \ne p }[/math] .
- Set [math]\displaystyle{ i_3:=i_3+1 }[/math] until [math]\displaystyle{ i_3=n+1 }[/math] or else [math]\displaystyle{ S[i_3] \ngtr p }[/math].
Correctness: Due to the various "otherwise" clauses, all possible cases are covered. Therefore, it remains to show that the invariants are maintained in each of the considered cases. As the values of [math]\displaystyle{ m_1 }[/math] and [math]\displaystyle{ m_2 }[/math] are never changed after initialization, all three parts of the first invariant are trivially maintained. Since [math]\displaystyle{ i_1 }[/math] (resp., [math]\displaystyle{ i_2 }[/math], [math]\displaystyle{ i_3 }[/math]) is only increased in case [math]\displaystyle{ i_1\lt m_1 }[/math] (resp., [math]\displaystyle{ i_2\lt m_2 }[/math], [math]\displaystyle{ i_3\lt n+1 }[/math]), Invariant 2.1 is maintained as well. So, we will focus on Invariants 2.2-2.4. If Step 2 applies, maintenance of Invariants 2.2-2.4 might be obvious. So consider Step 3. If Step 3 applies ([math]\displaystyle{ i_1=m_1 }[/math]), the break condition is not yet met, so we know [math]\displaystyle{ i_2\lt m_2 }[/math] or [math]\displaystyle{ i_3\lt n+1 }[/math], or both. Without loss of generality, assume [math]\displaystyle{ i_2\lt m_2 }[/math] (the other case is mirror-symmetric). Invariant 2.3 implies [math]\displaystyle{ S[i_2]\neq p }[/math], which amounts to [math]\displaystyle{ S[i_2]\gt p }[/math] in Step 3. So, not all elements [math]\displaystyle{ \gt p }[/math] are on the correct positions, which implies [math]\displaystyle{ i_3\lt n+1 }[/math]. In summary, it is safe to apply Step 3.
Java Implementation
//snipped from https://foo.algo.informatik.tu-darmstadt.de
//preperated for Spec
//AUTHOR: Thomas Lüdecke
//30.05.2015 05:22 | git 4072e171
private List<Integer> list executePivotPartitioning(int pivot, int m1, int m2, List<Integer> list){
//init and save
int i1 = 0;
int i2 = m1;
int i3 = m2;
//int i = 0; //Iteration Counter
//Inductionbase
while(i1 < m1 && list.get(i1) < pivot){
i1++;
}
while(i2 < m2 && list.get(i2) == pivot){
i2++;
}
while(i3 <list.size() && list.get(i3) > pivot){
i3++;
}
//each Iteration is one induction step
while(i1 < m1 || i2 < m2 || i3 < list.size()) {
if(i1 < m1) {
if(list.get(i1) == pivot) {
swap(i1,i2, list);
while(i2 < m2 && list.get(i2) == pivot){
i2++;
}
}else{
swap(i1,i3, list);
while(i3 <list.size() && list.get(i3) > pivot){
i3++;
}
}
while(i1 < m1 && list.get(i1) < pivot){
i1++;
}
//i++; //iteration end
}else{
swap(i2,i3, list);
while(i2 < m2 && list.get(i2) == pivot){
i2++;
}
while(i3 <list.size() && list.get(i3) > pivot){
i3++;
}
//i++; //iteration end
}
}
return list;
}
//AUTHOR: Alexander Jandousek
private void swap(int i1, int i2, List<Integer> list){
int temp = list.get(i1);
list.set(i1, list.get(i2));
list.set(i2, temp);
}
//These methods are used to init m1 and m2 before calling executePivotPartitioning(...)
//AUTHOR: Alexander Jandousek
private int calcM1(int pivot, List<Integer> list){
int m1 = 0;
for(int n : list){
m1 = (n < pivot)? m1+1: m1;
}
return m1;
}
//AUTHOR: Alexander Jandousek, Thomas Lüdecke
private int calcM2(int pivot, List<Integer> list){
int m2 = calcM1(pivot,list); //not optimized
for(int n : list){
m2 = (n == pivot)? m2+1: m2;
}
return m2;
}