Array list: number: Difference between revisions
No edit summary |
|||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
[[Category:Videos]] | |||
{{#ev:youtube|https://www.youtube.com/watch?v=uYTck0kDvl4|500|right||frame}} | |||
'''Algorithmic problem:''' [[Ordered sequence#Number|Ordered sequence: number]] | '''Algorithmic problem:''' [[Ordered sequence#Number|Ordered sequence: number]] | ||
Line 46: | Line 48: | ||
==Complexity== | ==Complexity== | ||
'''Statement:''' Linear in the length of the sequence in the worst case ( | '''Statement:''' Linear in the length of the sequence in the worst case (if the arrays of all array list items have identical lengths). | ||
'''Proof:''' Obvious. | '''Proof:''' Obvious. | ||
==Further information== | ==Further information== |
Latest revision as of 23:10, 19 June 2015
Algorithmic problem: Ordered sequence: number
Prerequisites:
Type of algorithm: loop
Auxiliary data:
- A pointer [math]\displaystyle{ p }[/math] of type "pointer to array list item of type [math]\displaystyle{ K }[/math]".
- A counter [math]\displaystyle{ c \in \mathbb{N}_0 }[/math].
Abstract view
Invariant: After [math]\displaystyle{ i \ge 0 }[/math] iterations:
- The pointer [math]\displaystyle{ p }[/math] points to the array list item at position [math]\displaystyle{ i+1 }[/math] (or is void if there is no such item).
- The value of [math]\displaystyle{ c }[/math] is the sum of the values n of all array list items at positions [math]\displaystyle{ 1,...,i }[/math].
Variant: [math]\displaystyle{ p }[/math] is moved one step forward so as to point to the next array list item.
Break condition: It is [math]\displaystyle{ p= }[/math] void.
Induction basis
Abstract view: Initialize [math]\displaystyle{ p }[/math] so as to point to the first array list item.
Implementation:
- Set [math]\displaystyle{ p:= }[/math]first.
- Set [math]\displaystyle{ c:=0 }[/math].
Proof: Nothing to show.
Induction step
Abstract view: Add the number of elements in the current array and then go forward.
Implementation:
- If [math]\displaystyle{ p= }[/math]void, terminate the algorithm and return the value of [math]\displaystyle{ c }[/math].
- Otherwise:
- Set [math]\displaystyle{ c:=c+p }[/math].n.
- Set [math]\displaystyle{ p:=p }[/math].next.
Correctness: Nothing to show.
Complexity
Statement: Linear in the length of the sequence in the worst case (if the arrays of all array list items have identical lengths).
Proof: Obvious.