Binary search tree: find: Difference between revisions
(8 intermediate revisions by the same user not shown) | |||
Line 22: | Line 22: | ||
'''Variant:''' <math>i</math> is increased by 1. | '''Variant:''' <math>i</math> is increased by 1. | ||
'''Break condition:''' Either it is <math>p = | '''Break condition:''' Either it is <math>p =</math>void or, otherwise, it is <math>p</math>.key <math>= K</math>. | ||
'''Remark:''' For example, the height of the subtree rooted at the node to which <math>p</math> points may be chosen as the induction parameter. For conciseness, the induction parameter is omitted in the following. | |||
== Induction basis == | == Induction basis == | ||
'''Abstract view:''' Set | '''Abstract view:''' Set <math>p:=</math> root. | ||
'''Implementation:''' Obvious | '''Implementation:''' Obvious | ||
Line 32: | Line 34: | ||
== Induction step == | == Induction step == | ||
'''Abstract view:''' If | '''Abstract view:''' If <math>p</math> points to a node but not with key <math>K</math>, <math>p</math> descends in the appropriate direction, left or right. | ||
'''Implementation:''' | '''Implementation:''' | ||
# If <math>p = | # If <math>p =</math> void, terminate the algorithm and return '''false'''. | ||
# Otherwise, if <math>p.key = K</math>, terminate the algorithm and return | # Otherwise, if <math>p</math>.key <math>= K</math>, terminate the algorithm and return '''true'''. | ||
# Otherwise: | # Otherwise: | ||
## If <math>K < p | ## If <math>K < p</math>.key, set <math>p :=</math>left. | ||
## If <math>K > p | ## If <math>K > p</math>.key, set <math>p :=</math> right. | ||
''' | '''Correctness:''' Obvious. | ||
== Complexity == | == Complexity == | ||
'''Statement:''' | '''Statement:''' The complexity is in <math>\mathcal{O}(T\cdot h)\subseteq\mathcal{O}(T\cdot n)</math> in the worst case, where <math>n</math> is the length of the sequence, <math>h</math> the height of the tree, and <math>T</math> the complexity of the comparison. | ||
'''Proof:''' Obvious. | '''Proof:''' Obvious. | ||
Latest revision as of 13:38, 3 March 2017
General Information
Algorithmic Problem: Sorted Sequence:find
Type of algorithm: loop
Auxiliary data: A pointer [math]\displaystyle{ p }[/math] of type "pointer to binary search tree node of type [math]\displaystyle{ \mathcal{K} }[/math]."
Abstract view
Invariant: After [math]\displaystyle{ i\geq 0 }[/math] Iterations.
- The pointer [math]\displaystyle{ p }[/math] points to a tree node [math]\displaystyle{ v }[/math] on height level [math]\displaystyle{ i }[/math] (or is void).
- The key [math]\displaystyle{ K }[/math] is in the range of [math]\displaystyle{ v }[/math].
Variant: [math]\displaystyle{ i }[/math] is increased by 1.
Break condition: Either it is [math]\displaystyle{ p = }[/math]void or, otherwise, it is [math]\displaystyle{ p }[/math].key [math]\displaystyle{ = K }[/math].
Remark: For example, the height of the subtree rooted at the node to which [math]\displaystyle{ p }[/math] points may be chosen as the induction parameter. For conciseness, the induction parameter is omitted in the following.
Induction basis
Abstract view: Set [math]\displaystyle{ p:= }[/math] root.
Implementation: Obvious
Proof: Nothing to show
Induction step
Abstract view: If [math]\displaystyle{ p }[/math] points to a node but not with key [math]\displaystyle{ K }[/math], [math]\displaystyle{ p }[/math] descends in the appropriate direction, left or right.
Implementation:
- If [math]\displaystyle{ p = }[/math] void, terminate the algorithm and return false.
- Otherwise, if [math]\displaystyle{ p }[/math].key [math]\displaystyle{ = K }[/math], terminate the algorithm and return true.
- Otherwise:
- If [math]\displaystyle{ K \lt p }[/math].key, set [math]\displaystyle{ p := }[/math]left.
- If [math]\displaystyle{ K \gt p }[/math].key, set [math]\displaystyle{ p := }[/math] right.
Correctness: Obvious.
Complexity
Statement: The complexity is in [math]\displaystyle{ \mathcal{O}(T\cdot h)\subseteq\mathcal{O}(T\cdot n) }[/math] in the worst case, where [math]\displaystyle{ n }[/math] is the length of the sequence, [math]\displaystyle{ h }[/math] the height of the tree, and [math]\displaystyle{ T }[/math] the complexity of the comparison.
Proof: Obvious.
Pseudocode
TREE-SEARCH (x, k)
- if x= NIL or k = key[x]
- then return x
- if k < key[x]
- then return TREE-SEARCH(left[x], k)
- else return TREE-SEARCH(right[x], k)