Binary search tree: remove node: Difference between revisions
(20 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
[[Category:Algorithm]] | |||
[[Category:Binary Search Tree]] | [[Category:Binary Search Tree]] | ||
<div class="plainlinks" style="float:right;margin:0 0 5px 5px; border:1px solid #AAAAAA; width:auto; padding:1em; margin: 0px 0px 1em 1em;"> | |||
<div style="font-size: 1.8em;font-weight:bold;text-align: center;margin:0.2em 0 1em 0">Binary Search Tree<br>Remove node</div> | |||
<div style="font-size: 1.2em; margin:.5em 0 1em 0; text-align:center">[[Sorted sequence]]</div> | |||
<div style="font-size: 1.2em; margin:.5em 0 .5em 0;text-align:center">[[File:olw_logo1.png|20px]][https://openlearnware.tu-darmstadt.de/#!/resource/binary-search-tree-1938 Openlearnware]<br>See Chapter 5</div> | |||
</div> | |||
== General Information == | == General Information == | ||
'''Algorithmic problem:''' See the remark clause of [[Binary Search Tree]]; pointer | '''Algorithmic problem:''' See the [[Binary Search Tree#Remark|remark clause]] of [[Binary Search Tree]]; pointer <math>p</math> as defined there is the input. | ||
'''Prerequisites:''' <math>p.left \neq | '''Prerequisites:''' <math>p</math>.left <math>\neq</math> void. | ||
'''Type of algorithm:''' loop | '''Type of algorithm:''' loop | ||
'''Auxiliary data:''' A pointer <math>p'</math> of type "pointer to a binary search tree node" | '''Auxiliary data:''' A pointer <math>p'</math> of type "pointer to a binary search tree node of type <math>\mathcal{K}</math>." | ||
== Abstract View == | == Abstract View == | ||
'''Invariant:''' | '''Invariant:''' | ||
# The [[Directed | # The [[Directed Tree#Immediate Predecessor and Successor|immediate predecessor]] of '''''K''''' is in the [[Directed Tree#Ranges of Search Tree Nodes|range]] of <math>p'</math>. | ||
# It is <math>p'.right | # It is <math>p'</math>.right <math>\neq</math> void. | ||
'''Variant:''' The pointer <math>p'</math> descends one level deeper, namely to <math>p</math>'.right. | |||
''' | '''Break condition:''' It is <math>p'</math>.right.right = void. | ||
''' | '''Remark:''' For example, the height of the subtree rooted at the node to which <math>p</math> points may be chosen as the induction parameter. For conciseness, the induction parameter is omitted in the following. | ||
== Induction Basis == | == Induction Basis == | ||
'''Abstract view:''' If <math>p.left</math> is the immediate predecessor of '''''K''''', overwrite '''''K''''' by its immediate predecessor and terminate; otherwise, initialize <math>p'</math>. | |||
'''Implementation:''' | |||
# If <math>p</math>.left.right = void: | |||
## Set <math>p</math>.key := p.left.key. | |||
## Set <math>p</math>.left := p.left.left. | |||
## Terminate the algorithm. | |||
#Otherwise, set <math>p'</math> := p.left. | |||
'''Proof:''' Obvious. | |||
== Induction Step == | == Induction Step == | ||
'''Abstract view:''' If <math>p'</math>.right.key is the immediate predecessor of <math>K</math>, overwrite <math>K</math> by its immediate predecessor and terminate; otherwise, let <math>p'</math> descend one level deeper. | |||
'''Implementation:''' | |||
# If <math>p'</math>.right.right = void: | |||
## Set <math>p</math>.key := <math>p'</math>.right.key. | |||
## Set <math>p'</math>.right := <math>p'</math>.right.left. | |||
## Terminate the algorithm. | |||
# Set <math>p':=p'</math>.right. | |||
'''Correctness:''' Obvious. | |||
== Complexity == | == Complexity == | ||
'''Statement:''' The complexity is in <math>\mathcal{O}(T\cdot h)\subseteq\mathcal{O}(T\cdot n)</math> in the worst case, where <math>n</math> is the length of the sequence, <math>h</math> the height of the tree, and <math>T</math> the complexity of the comparison. | |||
'''Proof:''' Obvious. |
Latest revision as of 13:39, 3 March 2017
General Information
Algorithmic problem: See the remark clause of Binary Search Tree; pointer [math]\displaystyle{ p }[/math] as defined there is the input.
Prerequisites: [math]\displaystyle{ p }[/math].left [math]\displaystyle{ \neq }[/math] void.
Type of algorithm: loop
Auxiliary data: A pointer [math]\displaystyle{ p' }[/math] of type "pointer to a binary search tree node of type [math]\displaystyle{ \mathcal{K} }[/math]."
Abstract View
Invariant:
- The immediate predecessor of K is in the range of [math]\displaystyle{ p' }[/math].
- It is [math]\displaystyle{ p' }[/math].right [math]\displaystyle{ \neq }[/math] void.
Variant: The pointer [math]\displaystyle{ p' }[/math] descends one level deeper, namely to [math]\displaystyle{ p }[/math]'.right.
Break condition: It is [math]\displaystyle{ p' }[/math].right.right = void.
Remark: For example, the height of the subtree rooted at the node to which [math]\displaystyle{ p }[/math] points may be chosen as the induction parameter. For conciseness, the induction parameter is omitted in the following.
Induction Basis
Abstract view: If [math]\displaystyle{ p.left }[/math] is the immediate predecessor of K, overwrite K by its immediate predecessor and terminate; otherwise, initialize [math]\displaystyle{ p' }[/math].
Implementation:
- If [math]\displaystyle{ p }[/math].left.right = void:
- Set [math]\displaystyle{ p }[/math].key := p.left.key.
- Set [math]\displaystyle{ p }[/math].left := p.left.left.
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p' }[/math] := p.left.
Proof: Obvious.
Induction Step
Abstract view: If [math]\displaystyle{ p' }[/math].right.key is the immediate predecessor of [math]\displaystyle{ K }[/math], overwrite [math]\displaystyle{ K }[/math] by its immediate predecessor and terminate; otherwise, let [math]\displaystyle{ p' }[/math] descend one level deeper.
Implementation:
- If [math]\displaystyle{ p' }[/math].right.right = void:
- Set [math]\displaystyle{ p }[/math].key := [math]\displaystyle{ p' }[/math].right.key.
- Set [math]\displaystyle{ p' }[/math].right := [math]\displaystyle{ p' }[/math].right.left.
- Terminate the algorithm.
- Set [math]\displaystyle{ p':=p' }[/math].right.
Correctness: Obvious.
Complexity
Statement: The complexity is in [math]\displaystyle{ \mathcal{O}(T\cdot h)\subseteq\mathcal{O}(T\cdot n) }[/math] in the worst case, where [math]\displaystyle{ n }[/math] is the length of the sequence, [math]\displaystyle{ h }[/math] the height of the tree, and [math]\displaystyle{ T }[/math] the complexity of the comparison.
Proof: Obvious.