Bellman-Ford: Difference between revisions
No edit summary |
|||
(7 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
[[Category:Videos]] | |||
[[Category: | |||
[[Category:Algorithm]] | [[Category:Algorithm]] | ||
[[Category:Main Algorithm]] | [[Category:Main Algorithm]] | ||
{{#ev:youtube|https://www.youtube.com/watch?v=3_zqU5GWo4w|500|right|All pairs shortest paths Bellman-Ford|frame}} | |||
==General information== | ==General information== | ||
'''Algorithmic problem:''' [[All pairs shortest paths]] | '''Algorithmic problem:''' [[All pairs shortest paths]] | ||
Line 11: | Line 11: | ||
'''Auxiliary data:''' | '''Auxiliary data:''' | ||
# A | # A real-valued <math>(n \times n)</math> matrix <math>M</math>, where <math>n=|V|</math>. The eventual contents of <math>M</math> will be returned as the result of the algorithm. | ||
# A | # A real-valued <math>(n \times n)</math> matrix <math>L</math>, where <math>n=|V|</math>. This matrix represents the graph and the arc lengths and will not be changed throughout the algorithm. | ||
'''Notation:''' | |||
On this page, <math>M^i</math> refers to the contents of <math>M</math> after <math>i\geq 0</math> iterations. | |||
==Abstract view== | ==Abstract view== | ||
Line 30: | Line 33: | ||
'''Abstract view:''' For all <math>v,w \in V</math>, we set <math>M^{i+1} (v,w) := \min \{ M^i (v,u) + L(u,w) \mid u \in V \}</math>. | '''Abstract view:''' For all <math>v,w \in V</math>, we set <math>M^{i+1} (v,w) := \min \{ M^i (v,u) + L(u,w) \mid u \in V \}</math>. | ||
(Note that <math> | (Note that <math>u=v</math> is included, so the right-hand side is identical to <math>\min \{ M^i (v,w), \min \{ M^i (v,u)+ L(u,w) \mid u \in V \} \}</math>.) | ||
'''Implementation:''' Obvious. | '''Implementation:''' Obvious. | ||
'''Correctness:''' Follows | '''Correctness:''' Follows from the fact that a shortest path cannot have more than <math>|V|-1</math> arcs. | ||
==Complexity== | ==Complexity== |
Latest revision as of 22:51, 19 June 2015
General information
Algorithmic problem: All pairs shortest paths
Prerequisites:
Type of algorithm: loop
Auxiliary data:
- A real-valued [math]\displaystyle{ (n \times n) }[/math] matrix [math]\displaystyle{ M }[/math], where [math]\displaystyle{ n=|V| }[/math]. The eventual contents of [math]\displaystyle{ M }[/math] will be returned as the result of the algorithm.
- A real-valued [math]\displaystyle{ (n \times n) }[/math] matrix [math]\displaystyle{ L }[/math], where [math]\displaystyle{ n=|V| }[/math]. This matrix represents the graph and the arc lengths and will not be changed throughout the algorithm.
Notation: On this page, [math]\displaystyle{ M^i }[/math] refers to the contents of [math]\displaystyle{ M }[/math] after [math]\displaystyle{ i\geq 0 }[/math] iterations.
Abstract view
Invariant: After [math]\displaystyle{ i \ge 0 }[/math] iterations, [math]\displaystyle{ M^i (v,w) }[/math] contains the length of a shortest [math]\displaystyle{ (v,w) }[/math]-path with at most [math]\displaystyle{ i+1 }[/math] arcs (for all [math]\displaystyle{ v,w \in V }[/math]).
Variant: [math]\displaystyle{ i }[/math] increases by 1.
Break condition: [math]\displaystyle{ i=n-1 }[/math].
Induction basis
Abstract view: For all [math]\displaystyle{ v,w \in V }[/math], we set
- [math]\displaystyle{ M^0 (v,v):= L(v,v) := 0 }[/math];
- [math]\displaystyle{ M^0 (v,w):= L(v,w) := \ell (v,w) }[/math] if [math]\displaystyle{ (v,w)\in A }[/math];
- [math]\displaystyle{ M^0 (v,w):= L(v,w) := +\infty }[/math], if [math]\displaystyle{ v\neq w }[/math] and [math]\displaystyle{ (v,w)\notin A }[/math].
Induction step
Abstract view: For all [math]\displaystyle{ v,w \in V }[/math], we set [math]\displaystyle{ M^{i+1} (v,w) := \min \{ M^i (v,u) + L(u,w) \mid u \in V \} }[/math].
(Note that [math]\displaystyle{ u=v }[/math] is included, so the right-hand side is identical to [math]\displaystyle{ \min \{ M^i (v,w), \min \{ M^i (v,u)+ L(u,w) \mid u \in V \} \} }[/math].)
Implementation: Obvious.
Correctness: Follows from the fact that a shortest path cannot have more than [math]\displaystyle{ |V|-1 }[/math] arcs.
Complexity
Statement: The asymptotic complexity is [math]\displaystyle{ \Theta (n^4) }[/math] in the best and worst case.
Proof: The main loop terminates after [math]\displaystyle{ n-1 }[/math] iterations. In each iteration of this loop, we update all [math]\displaystyle{ n^2 }[/math] matrix entries, and computing one update value requires [math]\displaystyle{ \Theta (n) }[/math] steps.