Kruskal for maximum spanning forest: Difference between revisions
m (Luedecke moved page Kruskal to Kruskal for maximum spanning forest: Old wiki name) |
|||
(16 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
[[Category:Videos]] | |||
{{#ev:youtube|https://www.youtube.com/watch?v=Pz6x3BB86YA|500|right|Chapters | |||
#[00:00] Einführung | |||
#[01:59] Der Algorithmus von Kruskal anhand eines Beispiels | |||
#[06:56] Und wie ist das bei mehreren Zusammenhangskomponenten? | |||
#[07:29] Welches Problem löst der Algorithmus von Kruskal genau? | |||
#[08:05] Wie lautet die Invariante? | |||
#[08:33] Warum ist der Algorithmus korrekt? | |||
#[08:59] Wie wird die Invariante sichergestellt? | |||
#[10:25] Was ist die asymptotische Komplexität des Algorithmus? | |||
|frame}} | |||
== General information == | |||
'''Algorithmic problem:''' [[Maximum spanning forest]] | |||
'''Prerequisites:''' | |||
'''Type of algorithm:''' loop | |||
'''Auxiliary data:''' | |||
#A [[sorted sequence]] <math>S</math> whose items are the edges of <math>E</math>. The edges are sorted in descending order, that is, the edge <math>e \in E</math> with the largest value of <math>\ell(e)</math> is the first element of the sequence (ties arbitrarily broken). Below, <math>e_i</math> denotes the <math>i</math>-th edge in <math>S</math>. | |||
#A [[union-find]] data structure <math>U F</math> on <math>V</math>. | |||
==Abstract view== | |||
'''Invariant:''' After <math>i \ge 0</math> iterations: | |||
#The [[undirected graph]] <math>F_i = (V,E_i)</math>, where <math>E_i</math> is the set of all selected edges immediately after the <math>i</math>-th iteration, is cycle-free; in particular, it is maximally cycle-free in the sense that, for <math>j \in \{1,...,i\}</math>, adding an edge <math>e_J \notin F_i</math> would close a cycle in <math>F_i</math>. | |||
#For the [[undirected graph]] <math>F_i = (V,E_i)</math>, there is a maximum spanning forest <math>F_i' = (V,E'_i)</math> of <math>G</math> such that <math>E_i \subseteq E'_i</math>. | |||
#The sets of <math>U F</math> are the connected components of <math>F_i</math>. | |||
'''Variant:''' <math>i</math> increases by <math>1</math>. | |||
'''Break condition:''' <math>i = \vert E \vert</math>. | |||
==Induction basis== | |||
'''Abstract view:''' | |||
# <math>E_0 := \emptyset</math> | |||
# <math>U F</math> is initialized by <math>V</math>, so each node <math>v \in V</math> is a singleton in <math>U F</math>. | |||
'''Implementation:''' Obvious. | |||
'''Proof:''' Nothing to show. | |||
==Induction step== | |||
'''Abstract view:''' If inserting <math>e_i</math> would close a cycle, reject <math>e_i</math>; otherwise, insert <math>e_i</math>. | |||
'''Implementation:''' | |||
#Let <math>v,w \in V</math> denote the endnodes of <math>e_i</math>, that is, <math>e_i = \{v,w\}</math>. | |||
#If <math>v</math> and <math>w</math> belong to different sets in <math>U F</math>: | |||
##Insert <math>e_i</math> in the result. | |||
##Unite the sets of <math>v</math> and <math>w</math> in <math>U F</math>. | |||
'''Correctness:''' The first and third invariants are obvious. So we focus on the second invariant. We may safely set <math>F'_i := F'_{i-1}</math> if | |||
#either <math>e_i \in E'_{i-1}</math> and <math>e_i</math> is inserted in the <math>i</math>-th iteration | |||
#or <math>e_i \notin E'_{i-1}</math> and <math>e_i</math> is rejected in the -th iteration. | |||
Note that the case that <math>e_i \in E'_{i-1}</math> and <math>e_i</math> is rejected cannot occur. In fact, <math>e_i \in E'_{i-1}</math> implies that <math>(V,E_{i-1} \cup{\{e_i\}})</math> is cycle-free, but rejecting <math>e_i</math> implies that <math>(V,E_{i-1} \cup{\{e_i\}})</math> contains a cycle. So it remains to consider the case that <math>e_i</math> is accepted but <math>e_i \notin E'_{i-1}</math>. | |||
As <math>\ell(e_i) > 0</math> and <math>F'_{i-1}</math> is maximal, <math>(V,E'_{i-1} \cup{\{e_i\}})</math> contains a cycle. Since <math>F_{i-1}</math> is cycle-free, there must be an edge <math>e \in E'_{i-1} \setminus E_{i-1}</math> on that cycle. By assumption, <math>(V,E_{i-1} \cup{\{e_i\}})</math> is cycle-free as well. Therefore, <math>e</math> is none of the edges considered so far but one of <math>e_{i+1},...,e_{\vert E \vert }</math>, which implies <math>\ell(e) \leq \ell(e_i)</math> and, hence, maximality of the spanning forest <math>F'_i := (V,E'_{i-1} \setminus \{e\} \cup{\{ e_i \}})</math>. Clearly, this <math>F'_i</math> includes <math>F_i</math>, so the second invariant is maintained again. | |||
==Complexity== | |||
'''Statement:''' The asymptotic complexity is in <math>\mathcal{O}(n \cdot T(n) + m\cdot\log m )</math> in the worst case, where <math>n = \vert V \vert</math> and <math>m = \vert E \vert</math>, and <math>T(n)</math> is the complexity of a single unite operation. | |||
'''Proof:''' The summand <math>\mathcal{O}(m\cdot \log m)</math> results from sorting all edges in the preprocessing. The main loop has <math>m</math> iteration. There are <math>n-1</math> unite operations. |
Latest revision as of 18:31, 20 September 2015
General information
Algorithmic problem: Maximum spanning forest
Prerequisites:
Type of algorithm: loop
Auxiliary data:
- A sorted sequence [math]\displaystyle{ S }[/math] whose items are the edges of [math]\displaystyle{ E }[/math]. The edges are sorted in descending order, that is, the edge [math]\displaystyle{ e \in E }[/math] with the largest value of [math]\displaystyle{ \ell(e) }[/math] is the first element of the sequence (ties arbitrarily broken). Below, [math]\displaystyle{ e_i }[/math] denotes the [math]\displaystyle{ i }[/math]-th edge in [math]\displaystyle{ S }[/math].
- A union-find data structure [math]\displaystyle{ U F }[/math] on [math]\displaystyle{ V }[/math].
Abstract view
Invariant: After [math]\displaystyle{ i \ge 0 }[/math] iterations:
- The undirected graph [math]\displaystyle{ F_i = (V,E_i) }[/math], where [math]\displaystyle{ E_i }[/math] is the set of all selected edges immediately after the [math]\displaystyle{ i }[/math]-th iteration, is cycle-free; in particular, it is maximally cycle-free in the sense that, for [math]\displaystyle{ j \in \{1,...,i\} }[/math], adding an edge [math]\displaystyle{ e_J \notin F_i }[/math] would close a cycle in [math]\displaystyle{ F_i }[/math].
- For the undirected graph [math]\displaystyle{ F_i = (V,E_i) }[/math], there is a maximum spanning forest [math]\displaystyle{ F_i' = (V,E'_i) }[/math] of [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ E_i \subseteq E'_i }[/math].
- The sets of [math]\displaystyle{ U F }[/math] are the connected components of [math]\displaystyle{ F_i }[/math].
Variant: [math]\displaystyle{ i }[/math] increases by [math]\displaystyle{ 1 }[/math].
Break condition: [math]\displaystyle{ i = \vert E \vert }[/math].
Induction basis
Abstract view:
- [math]\displaystyle{ E_0 := \emptyset }[/math]
- [math]\displaystyle{ U F }[/math] is initialized by [math]\displaystyle{ V }[/math], so each node [math]\displaystyle{ v \in V }[/math] is a singleton in [math]\displaystyle{ U F }[/math].
Implementation: Obvious.
Proof: Nothing to show.
Induction step
Abstract view: If inserting [math]\displaystyle{ e_i }[/math] would close a cycle, reject [math]\displaystyle{ e_i }[/math]; otherwise, insert [math]\displaystyle{ e_i }[/math].
Implementation:
- Let [math]\displaystyle{ v,w \in V }[/math] denote the endnodes of [math]\displaystyle{ e_i }[/math], that is, [math]\displaystyle{ e_i = \{v,w\} }[/math].
- If [math]\displaystyle{ v }[/math] and [math]\displaystyle{ w }[/math] belong to different sets in [math]\displaystyle{ U F }[/math]:
- Insert [math]\displaystyle{ e_i }[/math] in the result.
- Unite the sets of [math]\displaystyle{ v }[/math] and [math]\displaystyle{ w }[/math] in [math]\displaystyle{ U F }[/math].
Correctness: The first and third invariants are obvious. So we focus on the second invariant. We may safely set [math]\displaystyle{ F'_i := F'_{i-1} }[/math] if
- either [math]\displaystyle{ e_i \in E'_{i-1} }[/math] and [math]\displaystyle{ e_i }[/math] is inserted in the [math]\displaystyle{ i }[/math]-th iteration
- or [math]\displaystyle{ e_i \notin E'_{i-1} }[/math] and [math]\displaystyle{ e_i }[/math] is rejected in the -th iteration.
Note that the case that [math]\displaystyle{ e_i \in E'_{i-1} }[/math] and [math]\displaystyle{ e_i }[/math] is rejected cannot occur. In fact, [math]\displaystyle{ e_i \in E'_{i-1} }[/math] implies that [math]\displaystyle{ (V,E_{i-1} \cup{\{e_i\}}) }[/math] is cycle-free, but rejecting [math]\displaystyle{ e_i }[/math] implies that [math]\displaystyle{ (V,E_{i-1} \cup{\{e_i\}}) }[/math] contains a cycle. So it remains to consider the case that [math]\displaystyle{ e_i }[/math] is accepted but [math]\displaystyle{ e_i \notin E'_{i-1} }[/math].
As [math]\displaystyle{ \ell(e_i) \gt 0 }[/math] and [math]\displaystyle{ F'_{i-1} }[/math] is maximal, [math]\displaystyle{ (V,E'_{i-1} \cup{\{e_i\}}) }[/math] contains a cycle. Since [math]\displaystyle{ F_{i-1} }[/math] is cycle-free, there must be an edge [math]\displaystyle{ e \in E'_{i-1} \setminus E_{i-1} }[/math] on that cycle. By assumption, [math]\displaystyle{ (V,E_{i-1} \cup{\{e_i\}}) }[/math] is cycle-free as well. Therefore, [math]\displaystyle{ e }[/math] is none of the edges considered so far but one of [math]\displaystyle{ e_{i+1},...,e_{\vert E \vert } }[/math], which implies [math]\displaystyle{ \ell(e) \leq \ell(e_i) }[/math] and, hence, maximality of the spanning forest [math]\displaystyle{ F'_i := (V,E'_{i-1} \setminus \{e\} \cup{\{ e_i \}}) }[/math]. Clearly, this [math]\displaystyle{ F'_i }[/math] includes [math]\displaystyle{ F_i }[/math], so the second invariant is maintained again.
Complexity
Statement: The asymptotic complexity is in [math]\displaystyle{ \mathcal{O}(n \cdot T(n) + m\cdot\log m ) }[/math] in the worst case, where [math]\displaystyle{ n = \vert V \vert }[/math] and [math]\displaystyle{ m = \vert E \vert }[/math], and [math]\displaystyle{ T(n) }[/math] is the complexity of a single unite operation.
Proof: The summand [math]\displaystyle{ \mathcal{O}(m\cdot \log m) }[/math] results from sorting all edges in the preprocessing. The main loop has [math]\displaystyle{ m }[/math] iteration. There are [math]\displaystyle{ n-1 }[/math] unite operations.