Binary search tree: remove: Difference between revisions
mNo edit summary |
|||
(23 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
[[Category:Binary Search Tree]] | [[Category:Binary Search Tree]] | ||
[[Category:Algorithm]] | [[Category:Algorithm]] | ||
<div class="plainlinks" style="float:right;margin:0 0 5px 5px; border:1px solid #AAAAAA; width:auto; padding:1em; margin: 0px 0px 1em 1em;"> | |||
<div style="font-size: 1.8em;font-weight:bold;text-align: center;margin:0.2em 0 1em 0">Binary Search Tree<br>Remove</div> | |||
<div style="font-size: 1.2em; margin:.5em 0 1em 0; text-align:center">[[Sorted sequence]]</div> | |||
<div style="font-size: 1.2em; margin:.5em 0 .5em 0;text-align:center">[[File:olw_logo1.png|20px]][https://openlearnware.tu-darmstadt.de/#!/resource/binary-search-tree-1938 Openlearnware]<br>See Chapter 5</div> | |||
</div> | |||
== General Information == | == General Information == | ||
'''Algorithmic Problem:''' [[Sorted | '''Algorithmic Problem:''' [[Sorted sequence#Remove|Sorted sequence:remove]] | ||
'''Type of algorithm:''' loop | '''Type of algorithm:''' loop | ||
'''Auxiliary data:''' A pointer | '''Auxiliary data:''' A pointer <math>p</math> of type "pointer to binary search tree node of type <math>\mathcal{K}</math>." | ||
== Abstract view == | == Abstract view == | ||
'''Invariant''' After <math>i \geq 0</math> interations: | '''Invariant''' After <math>i \geq 0</math> interations: | ||
# The pointer | # The pointer <math>p</math> points to a tree node <math>v</math> on height level <math>i</math>. | ||
# The key | # The key <math>K</math> is in [[Directed Tree#Ranges of Search Tree Nodes|range]] of <math>p</math>, but <math>p.key \neq K</math>. | ||
'''Variant:''' | '''Variant:''' <math>i</math> increased by <math>1</math>. | ||
'''Break Condition:''' One of the following two conditions is fulfilled: | '''Break Condition:''' One of the following two conditions is fulfilled: | ||
# It is <math>K < p | # It is <math>K < p</math>.key and either <math>p</math>.left = void or <math>p</math>.left.key <math>= K</math>. | ||
# It is <math>K > p | # It is <math>K > p</math>.key and either <math>p</math>.right = void or <math>p</math>.right.key = <math>K</math>. | ||
'''Remark:''' For example, the height of the subtree rooted at the node to which <math>p</math> points may be chosen as the induction parameter. For conciseness, the induction parameter is omitted in the following. | |||
== Induction basis== | == Induction basis== | ||
'''Abstract view:''' | '''Abstract view:''' | ||
# If the root contains | # If the root contains <math>K</math>, remove this occurrence of <math>K</math>. | ||
# Otherwise, initialize | # Otherwise, initialize <math>p</math> so as to point to the root. | ||
'''Implementation:''' | '''Implementation:''' | ||
# If <math> | # If root.key <math>= K</math>: | ||
## If | ## If root.left = void, set root := root.right. | ||
## Otherwise, if | ## Otherwise, if root.right = void, set root := root.left. | ||
## Otherwise, call method [[Binary Search Tree: | ## Otherwise, call method [[Binary Search Tree:Remove node|remove node]] with pointer root. | ||
## Terminate the algorithm and return | ## Terminate the algorithm and return '''true'''. | ||
# Otherwise set <math>p := | # Otherwise set <math>p :=</math> root. | ||
'''Proof:''' | '''Proof:''' Obvious. | ||
== Induction step== | == Induction step== | ||
'''Abstract View:''' | '''Abstract View:''' | ||
# If the next node where to go does not exist or contains | # If the next node where to go does not exist or contains <math>K</math>, terminate the algorithm (and in the latter case, remove that node appropriately). | ||
# Otherwise, descend to that node. | # Otherwise, descend to that node. | ||
'''Implementation:''' | '''Implementation:''' | ||
# | # If <math>K < p</math>.key: | ||
## If <math>p.left = void | ## If <math>p</math>.left = void, terminate the algorithm and return '''false'''. | ||
## Otherwise if <math>p.left.key = K</math>: | ## Otherwise if <math>p</math>.left.key <math>= K</math>: | ||
### If <math>p.left.left = void< | ### If <math>p</math>.left.left = void, set <math>p</math>.left := p.left.right. | ||
### Otherwise, if <math>p.left.right = void< | ### Otherwise, if <math>p</math>.left.right = void, set <math>p</math>.left := p.left.left. | ||
### Otherwise, call method [[Binary Search Tree: | ### Otherwise, call method [[Binary Search Tree:Remove node|remove node]] with pointer <math>p</math>.left. | ||
### Terminate the algorithm and return | ### Terminate the algorithm and return '''true'''. | ||
## Otherwise (that is, <math>p.left \neq | ## Otherwise (that is, <math>p</math>.left <math>\neq</math> void and <math>p</math>.left.key <math>\neq K</math>), set <math>p := p</math>.left. | ||
# Otherwise (that is, <math>K > p | # Otherwise (that is, <math>K > p</math>.key): | ||
## If <math>p.right = void | ## If <math>p</math>.right = void, terminate the algorithm and return '''false'''. | ||
## Otherwise, if <math>p.right.key = K</math>: | ## Otherwise, if <math>p</math>.right.key <math>= K</math>: | ||
### If <math>p.right.left = void< | ### If <math>p</math>.right.left = void, set <math>p</math>.right <math>=p</math>.right.right. | ||
### Otherwise, if <math>p.right.right = void< | ### Otherwise, if <math>p</math>.right.right = void, set <math>p</math>.right <math>= p</math>.right.left. | ||
### Otherwise, call method [[Binary Search Tree: | ### Otherwise, call method [[Binary Search Tree:Remove node|remove node]] with pointer <math>p</math>.right. | ||
### Terminate the algorithm and return | ### Terminate the algorithm and return '''true'''. | ||
## Otherwise (that is, <math>p.right \neq | ## Otherwise (that is, <math>p</math>.right <math>\neq</math> void and <math>p</math>.right.key <math>\neq K</math>), set <math>p:= p</math>.right. | ||
'''Correctness:''' Nothing to show. | '''Correctness:''' Nothing to show. | ||
Line 83: | Line 92: | ||
== Complexity== | == Complexity== | ||
'''Statement:''' | '''Statement:''' The complexity is in <math>\mathcal{O}(T\cdot h)\subseteq\mathcal{O}(T\cdot n)</math> in the worst case, where <math>n</math> is the length of the sequence, <math>h</math> the height of the tree, and <math>T</math> the complexity of the comparison. | ||
'''Proof:''' Obvious. | '''Proof:''' Obvious. |
Latest revision as of 13:39, 3 March 2017
General Information
Algorithmic Problem: Sorted sequence:remove
Type of algorithm: loop
Auxiliary data: A pointer [math]\displaystyle{ p }[/math] of type "pointer to binary search tree node of type [math]\displaystyle{ \mathcal{K} }[/math]."
Abstract view
Invariant After [math]\displaystyle{ i \geq 0 }[/math] interations:
- The pointer [math]\displaystyle{ p }[/math] points to a tree node [math]\displaystyle{ v }[/math] on height level [math]\displaystyle{ i }[/math].
- The key [math]\displaystyle{ K }[/math] is in range of [math]\displaystyle{ p }[/math], but [math]\displaystyle{ p.key \neq K }[/math].
Variant: [math]\displaystyle{ i }[/math] increased by [math]\displaystyle{ 1 }[/math].
Break Condition: One of the following two conditions is fulfilled:
- It is [math]\displaystyle{ K \lt p }[/math].key and either [math]\displaystyle{ p }[/math].left = void or [math]\displaystyle{ p }[/math].left.key [math]\displaystyle{ = K }[/math].
- It is [math]\displaystyle{ K \gt p }[/math].key and either [math]\displaystyle{ p }[/math].right = void or [math]\displaystyle{ p }[/math].right.key = [math]\displaystyle{ K }[/math].
Remark: For example, the height of the subtree rooted at the node to which [math]\displaystyle{ p }[/math] points may be chosen as the induction parameter. For conciseness, the induction parameter is omitted in the following.
Induction basis
Abstract view:
- If the root contains [math]\displaystyle{ K }[/math], remove this occurrence of [math]\displaystyle{ K }[/math].
- Otherwise, initialize [math]\displaystyle{ p }[/math] so as to point to the root.
Implementation:
- If root.key [math]\displaystyle{ = K }[/math]:
- If root.left = void, set root := root.right.
- Otherwise, if root.right = void, set root := root.left.
- Otherwise, call method remove node with pointer root.
- Terminate the algorithm and return true.
- Otherwise set [math]\displaystyle{ p := }[/math] root.
Proof: Obvious.
Induction step
Abstract View:
- If the next node where to go does not exist or contains [math]\displaystyle{ K }[/math], terminate the algorithm (and in the latter case, remove that node appropriately).
- Otherwise, descend to that node.
Implementation:
- If [math]\displaystyle{ K \lt p }[/math].key:
- If [math]\displaystyle{ p }[/math].left = void, terminate the algorithm and return false.
- Otherwise if [math]\displaystyle{ p }[/math].left.key [math]\displaystyle{ = K }[/math]:
- If [math]\displaystyle{ p }[/math].left.left = void, set [math]\displaystyle{ p }[/math].left := p.left.right.
- Otherwise, if [math]\displaystyle{ p }[/math].left.right = void, set [math]\displaystyle{ p }[/math].left := p.left.left.
- Otherwise, call method remove node with pointer [math]\displaystyle{ p }[/math].left.
- Terminate the algorithm and return true.
- Otherwise (that is, [math]\displaystyle{ p }[/math].left [math]\displaystyle{ \neq }[/math] void and [math]\displaystyle{ p }[/math].left.key [math]\displaystyle{ \neq K }[/math]), set [math]\displaystyle{ p := p }[/math].left.
- Otherwise (that is, [math]\displaystyle{ K \gt p }[/math].key):
- If [math]\displaystyle{ p }[/math].right = void, terminate the algorithm and return false.
- Otherwise, if [math]\displaystyle{ p }[/math].right.key [math]\displaystyle{ = K }[/math]:
- If [math]\displaystyle{ p }[/math].right.left = void, set [math]\displaystyle{ p }[/math].right [math]\displaystyle{ =p }[/math].right.right.
- Otherwise, if [math]\displaystyle{ p }[/math].right.right = void, set [math]\displaystyle{ p }[/math].right [math]\displaystyle{ = p }[/math].right.left.
- Otherwise, call method remove node with pointer [math]\displaystyle{ p }[/math].right.
- Terminate the algorithm and return true.
- Otherwise (that is, [math]\displaystyle{ p }[/math].right [math]\displaystyle{ \neq }[/math] void and [math]\displaystyle{ p }[/math].right.key [math]\displaystyle{ \neq K }[/math]), set [math]\displaystyle{ p:= p }[/math].right.
Correctness: Nothing to show.
Pseudocode
TREE-DELETE(T,z)
- if left[z] = NULL or right[z] = NULL
- then y = z
- else y = TREE-SUCCESSOR(z)
- if left[y] ≠ NULL
- then x = left[y]
- else x = right[y]
- if x ≠ NULL
- then p[x] = p [y]
- if p[y] = NULL
- then root[T] = x
- else if y = left[p[y]]
- then left[p[y]] = x
- else right[p[y]] = x
- if y ≠ z
- then key[z] = key[y]
- copy y's satellite data into z
- then key[z] = key[y]
- return y
Complexity
Statement: The complexity is in [math]\displaystyle{ \mathcal{O}(T\cdot h)\subseteq\mathcal{O}(T\cdot n) }[/math] in the worst case, where [math]\displaystyle{ n }[/math] is the length of the sequence, [math]\displaystyle{ h }[/math] the height of the tree, and [math]\displaystyle{ T }[/math] the complexity of the comparison.
Proof: Obvious.