Ahuja-Orlin: Difference between revisions
Jump to navigation
Jump to search
Line 16: | Line 16: | ||
'''Variant:''' | '''Variant:''' | ||
Exactly one of the following actions will take place in the current iteration: | |||
# An arc is appended to the current path. | |||
# At least one arc is [[Basic flow definitions|saturated]]. | |||
# The distance label of some node is increased. | |||
'''Break condition:''' <math>d(s)\geq n</math>. | '''Break condition:''' <math>d(s)\geq n</math>. |
Revision as of 10:02, 13 October 2014
General Information
Algorithmic problem: Max-Flow Problems
Type of algorithm: loop
Abstract View
Invariant: After [math]\displaystyle{ i \ge 0 }[/math] iterations:
- The flow [math]\displaystyle{ f }[/math] is a fleasible flow.
- If all upper bounds are integral, [math]\displaystyle{ f }[/math] is integral as well.
- There is a valid distance labeling [math]\displaystyle{ d }[/math] with respect to [math]\displaystyle{ f }[/math].
- Each node [math]\displaystyle{ v\in V\setminus\{t\} }[/math] has a current arc, which is either void or one of the outgoing arcs of [math]\displaystyle{ v }[/math].
- There is a current flow-augmenting path with respect to [math]\displaystyle{ f }[/math]. This path starts with [math]\displaystyle{ s }[/math] and ends at an arbitrary node of [math]\displaystyle{ G }[/math]. Each arc on this path is the current arc of its tail node.
Variant: Exactly one of the following actions will take place in the current iteration:
- An arc is appended to the current path.
- At least one arc is saturated.
- The distance label of some node is increased.
Break condition: [math]\displaystyle{ d(s)\geq n }[/math].
Induction basis
Induction step
Complexity
Remark
This algorithm may be seen as a "lazy" variant on Edmonds-Karp. In fact, the most expensive step there is the computation of a flow-augmenting [math]\displaystyle{ (s,t) }[/math]-path. This task amounts to computing the true distance from every node to [math]\displaystyle{ t }[/math]. A valid distance labeling may be seen as "lazily evaluated" true distances.