Three indians' algorithm: Difference between revisions
Jump to navigation
Jump to search
Line 41: | Line 41: | ||
# The algorithm is named after three indian researchers, V. M. Malhotra, M. Pramodh Kumar, and S. N. Mahashwari. | # The algorithm is named after three indian researchers, V. M. Malhotra, M. Pramodh Kumar, and S. N. Mahashwari. | ||
# Of course, the nodes need not really be removed from the graph. However, "removed" nodes must be hidden from the algorithm to ensure the asymptotic complexity; a Boolean lable "is removed" does not suffice for that. | # Of course, the nodes and arcs need not really be removed from the graph. However, "removed" nodes and arcs must be hidden from the algorithm to ensure the asymptotic complexity; a Boolean lable "is removed" does not suffice for that. |
Revision as of 03:06, 20 October 2014
General information
Algorithmic problem: Blocking flow.
Type of algorithm: loop.
Abstract view
Invariant: The current flow is feasible.
Variant: The number of nodes strictly decreases.
Induction basis
Abstract view: The flow is initialized to be feasible, for example, the zero flow.
Proof: Obvious.
Induction step
Abstract view: Choose the node [math]\displaystyle{ v_0 }[/math] through which the minimum amount of flow may go, and propagate this amount from [math]\displaystyle{ v_0 }[/math] forward to [math]\displaystyle{ t }[/math] and backward to [math]\displaystyle{ s }[/math].
Implementation:
- For each node [math]\displaystyle{ v\in V\setminus\{s,t\} }[/math], let [math]\displaystyle{ T(v):=\min\left\{\sum_{w:(v,w)\in A}u(v,w),\sum_{w:(w,v)\in A}u(w,v)\right\} }[/math] (the throughput of node [math]\displaystyle{ v }[/math]).
- Let [math]\displaystyle{ v_0\in V\setminus\{s,t\} }[/math] be a node with minimum potential [math]\displaystyle{ P(v_0) }[/math].
- Set [math]\displaystyle{ F(v_0):=T(v_0) }[/math] and [math]\displaystyle{ T(v):=0 }[/math] for all nodes [math]\displaystyle{ v\in V\setminus\{s,t\} }[/math].
- Run a modified BFS from [math]\displaystyle{ v }[/math], where for every processed arc [math]\displaystyle{ (v,w)\in A }[/math]:
- Let [math]\displaystyle{ \Delta:=\min\{u(v,w),F(v)\} }[/math].
- Increase the flow over [math]\displaystyle{ (v,w) }[/math] by [math]\displaystyle{ \Delta }[/math].
- Increase [math]\displaystyle{ F(w) }[/math] by [math]\displaystyle{ \Delta }[/math].
- Decrease [math]\displaystyle{ F(v) }[/math] by [math]\displaystyle{ \Delta }[/math].
- If [math]\displaystyle{ F(v)=0 }[/math], remove [math]\displaystyle{ v }[/math] and all of its incident arcs from [math]\displaystyle{ G }[/math].
- Run the same modification from [math]\displaystyle{ v_0 }[/math] on the transpose of [math]\displaystyle{ G }[/math] (all removals apply to [math]\displaystyle{ G }[/math]).
Remarks
- The algorithm is named after three indian researchers, V. M. Malhotra, M. Pramodh Kumar, and S. N. Mahashwari.
- Of course, the nodes and arcs need not really be removed from the graph. However, "removed" nodes and arcs must be hidden from the algorithm to ensure the asymptotic complexity; a Boolean lable "is removed" does not suffice for that.