All pairs shortest paths: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 14: | Line 14: | ||
# [[Floyd-Warshall]] | # [[Floyd-Warshall]] | ||
# [[Bellman-Ford]] | # [[Bellman-Ford]] | ||
# [[Shortest | # [[Shortest paths by repeated squaring]] (varian of Bellman-Ford) |
Revision as of 04:39, 22 October 2014
Input
- A directed graph [math]\displaystyle{ G = (V,A) }[/math]
- An arc length [math]\displaystyle{ l(a) \in \mathbb{R} }[/math] for each arc [math]\displaystyle{ a \in A }[/math]
Ouptut
For each pair [math]\displaystyle{ (v,w) \in A }[/math] with [math]\displaystyle{ v,w \in V }[/math], the length [math]\displaystyle{ \Delta(v,w) }[/math] of a shortest [math]\displaystyle{ (v,w) }[/math]-path in [math]\displaystyle{ G }[/math] with respect to [math]\displaystyle{ l }[/math].
Complexity
Polynomial
Known algorithms
- Floyd-Warshall
- Bellman-Ford
- Shortest paths by repeated squaring (varian of Bellman-Ford)