Blocking flow: Difference between revisions

From Algowiki
Jump to navigation Jump to search
No edit summary
 
Line 1: Line 1:
== Basic definitions ==
# [[Basic graph definitions]]
# [[Basic flow definitions]]
== Definition ==
== Definition ==



Latest revision as of 19:06, 9 November 2014

Basic definitions

  1. Basic graph definitions
  2. Basic flow definitions

Definition

Let [math]\displaystyle{ G=(V,A) }[/math] be a directed graph, let [math]\displaystyle{ s,t\in V }[/math], and for each arc [math]\displaystyle{ a\in A }[/math] let [math]\displaystyle{ u(a) }[/math] and [math]\displaystyle{ f(a) }[/math] be real values such that [math]\displaystyle{ 0\leq f(a)\leq u(a) }[/math]. We say that [math]\displaystyle{ f }[/math] is a blocking flow if every flow augmenting [math]\displaystyle{ (s,t) }[/math]-path contains at least one backward arc.

Remarks:

  1. The name refers to an alternative, equivalent definition: Every ordinary [math]\displaystyle{ (s,t) }[/math]-path contains at least one saturated arc, which "blocks" the augmentation.
  2. Obviously, maximum flows are blocking flows, but not vice versa.

Input

  1. An acyclic directed graph [math]\displaystyle{ G=(V,A) }[/math].
  2. A source node [math]\displaystyle{ s\in V }[/math] and a target node [math]\displaystyle{ t\in V }[/math].
  3. An upper bound [math]\displaystyle{ u(a) }[/math] for each arc [math]\displaystyle{ a\in A }[/math].

Output

A blocking flow [math]\displaystyle{ f }[/math].

Known Algorithms

  1. Blocking flow by Dinic
  2. Three indians' algorithm