Basics of shortest paths: Difference between revisions
(Created page with "== Path lengths and distances == Let <math>G=(V,A)</math> be a simple directed graph and for each arc <math>a\in A</math> let <math>\ell(a...") |
|||
Line 15: | Line 15: | ||
== Valid distance property == | == Valid distance property == | ||
Let <math>s\in V</math> and for each node <math>u\in V</math> let <math>d_\ell(u)</math> denote the distance from <math>s</math> to <math>u</math> with respect to the arc lengths <math>\ell</math>. For <math>(v,w)\in A</math>, it is <math>d_\ell(w)\leq d_\ell(v)+\ell(v,w)</math> | Let <math>s\in V</math> and for each node <math>u\in V</math> let <math>d_\ell(u)</math> denote the distance from <math>s</math> to <math>u</math> with respect to the arc lengths <math>\ell</math>. | ||
'''Statement:''' | |||
For <math>(v,w)\in A</math>, it is <math>d_\ell(w)\leq d_\ell(v)+\ell(v,w)</math>. | |||
'''Proof:''' | |||
The left-hand side is the length of a shortest <math>(s,w)</math>-path, whereas the right-hand side is the length of ''some'' <math>(s,w)</math>-path (viz. the shortest <math>(s,v)</math> with <math>(v,w)</math> appended). |
Revision as of 12:34, 12 November 2014
Path lengths and distances
Let [math]\displaystyle{ G=(V,A) }[/math] be a simple directed graph and for each arc [math]\displaystyle{ a\in A }[/math] let [math]\displaystyle{ \ell(a) }[/math] be a real number, the length of [math]\displaystyle{ a }[/math].
- The length of an ordinary path (incl. ordinary cycles) is the sum of the lengths of all arcs on this path.
- Depending on the context, the length of a generalized path (incl. generalized cycles) is either defined identically to ordinary paths or, alternatively, the lengths of the backward arcs are not added but subtracted.
- If the length of an ordinary or generalized cycle is negative, this cycle is called a negative cycle.
- For two nodes, [math]\displaystyle{ s,t\in V }[/math]:
- A shortest path from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] is an [math]\displaystyle{ (s,t) }[/math]-path with minimum length among all [math]\displaystyle{ (s,t) }[/math]-paths.
- The distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] is the length of a shortest [math]\displaystyle{ (s,t) }[/math]-path.
Remarks:
- In this context, undirected graphs are usually regarded as symmetric directed graphs such that two opposite arcs have the same length.
- If there are no negative cycles, the distances from a node to itself is zero because the trivial path with no arcs has length zero.
Valid distance property
Let [math]\displaystyle{ s\in V }[/math] and for each node [math]\displaystyle{ u\in V }[/math] let [math]\displaystyle{ d_\ell(u) }[/math] denote the distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ u }[/math] with respect to the arc lengths [math]\displaystyle{ \ell }[/math].
Statement: For [math]\displaystyle{ (v,w)\in A }[/math], it is [math]\displaystyle{ d_\ell(w)\leq d_\ell(v)+\ell(v,w) }[/math].
Proof: The left-hand side is the length of a shortest [math]\displaystyle{ (s,w) }[/math]-path, whereas the right-hand side is the length of some [math]\displaystyle{ (s,w) }[/math]-path (viz. the shortest [math]\displaystyle{ (s,v) }[/math] with [math]\displaystyle{ (v,w) }[/math] appended).