Binary search tree: find: Difference between revisions

From Algowiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
:TREE-SEARCH (x, k)
== General Information ==
::if x= NIL or k = key[x]
 
:::then return x
'''Algorithmic Problem:''' [[Sorted Sequence:find]]
::if k < key[x]
 
:::then return TREE-SEARCH(left[x], k)
'''Type of algorithm:''' loop
::else return TREE-SEARCH(right[x], k)
 
'''Auxiliary data:'''  A pointer '''''p''''' of type "pointer to binary search tree node of type <math>\kappa</math>".
 
== Abstract view ==
'''Invariant:''' After <math>i\geq 0</math> Iterations.
# The pointer '''''p''''' points to a tree node '''''v''''' on height level '''''i''''' (or is void).
# The key '''''K''''' is in the range of '''''v'''''.
'''Variant:''' '''''i''''' is increased by 1.
 
'''Break condition:''' Either it is <math>p = void</math> or, otherwise, <math>p.key = K</math>.
== Induction basis ==
'''Abstract view:''' Set '''''p''''':= '''''root'''''.
 
'''Implementation:''' Obvious
 
'''Proof:''' Nothing to show
 
== Induction step ==
'''Abstract view:''' If '''''p''''' points to a node but not with key '''''K''''', '''''p''''' descends in the appropriate direction, left or right.
 
'''Implementation:'''
# If <math>p = void</math>, terminate the algorithm and return '''''false'''''.
# Otherwise, if <math>p.key = K</math>, terminate the algorithm and return '''''true'''''.
# Otherwise:
## If <math>K < p.key</math>, set <math>p := left</math>.
## If <math>K > p.key</math>, set <math>p := right</math>.
 
'''Correctnes:''' Obvious.
 
== Complexity ==
'''Statement:''' Linear in the length of the sequence in the worst case (more precisely, linear in the height of the tree).
 
'''Proof:''' Obvious.
 
== Implementation ==
TREE-SEARCH (x, k)
:if x= NIL or k = key[x]
::then return x
:if k < key[x]
::then return TREE-SEARCH(left[x], k)
:else return TREE-SEARCH(right[x], k)
[[Category:Binary_Search_Tree]]
[[Category:Binary_Search_Tree]]

Revision as of 19:55, 23 September 2014

General Information

Algorithmic Problem: Sorted Sequence:find

Type of algorithm: loop

Auxiliary data: A pointer p of type "pointer to binary search tree node of type [math]\displaystyle{ \kappa }[/math]".

Abstract view

Invariant: After [math]\displaystyle{ i\geq 0 }[/math] Iterations.

  1. The pointer p points to a tree node v on height level i (or is void).
  2. The key K is in the range of v.

Variant: i is increased by 1.

Break condition: Either it is [math]\displaystyle{ p = void }[/math] or, otherwise, [math]\displaystyle{ p.key = K }[/math].

Induction basis

Abstract view: Set p:= root.

Implementation: Obvious

Proof: Nothing to show

Induction step

Abstract view: If p points to a node but not with key K, p descends in the appropriate direction, left or right.

Implementation:

  1. If [math]\displaystyle{ p = void }[/math], terminate the algorithm and return false.
  2. Otherwise, if [math]\displaystyle{ p.key = K }[/math], terminate the algorithm and return true.
  3. Otherwise:
    1. If [math]\displaystyle{ K \lt p.key }[/math], set [math]\displaystyle{ p := left }[/math].
    2. If [math]\displaystyle{ K \gt p.key }[/math], set [math]\displaystyle{ p := right }[/math].

Correctnes: Obvious.

Complexity

Statement: Linear in the length of the sequence in the worst case (more precisely, linear in the height of the tree).

Proof: Obvious.

Implementation

TREE-SEARCH (x, k)

if x= NIL or k = key[x]
then return x
if k < key[x]
then return TREE-SEARCH(left[x], k)
else return TREE-SEARCH(right[x], k)