Maximum-weight matching: Difference between revisions

From Algowiki
Jump to navigation Jump to search
(Created page with "== Basic definitions == # Basic graph definitions # Matchings in graphs == Definition == '''Input:''' # An undirected graph <math>G=(V,E)</math>. # A '''weight''' <...")
 
Line 8: Line 8:
'''Input:'''
'''Input:'''
# An undirected graph <math>G=(V,E)</math>.
# An undirected graph <math>G=(V,E)</math>.
# A '''weight''' <math>w(e)</math> for each edge <math>e\in E</math>.
# A real-valued '''weight''' <math>w(e)</math> for each edge <math>e\in E</math>.


'''Output:'''
'''Output:'''
A matching <math>M</math> in <math>G</math> such that <math>\sum_{e\in M'}w(e)\leq\sum_{e\in M}w(e)</math> for any other matching <math>M'</math> in <math>G</math>.
A matching <math>M</math> in <math>G</math> such that <math>\sum_{e\in M'}w(e)\leq\sum_{e\in M}w(e)</math> for any other matching <math>M'</math> in <math>G</math>.

Revision as of 10:16, 21 November 2014

Basic definitions

  1. Basic graph definitions
  2. Matchings in graphs

Definition

Input:

  1. An undirected graph [math]\displaystyle{ G=(V,E) }[/math].
  2. A real-valued weight [math]\displaystyle{ w(e) }[/math] for each edge [math]\displaystyle{ e\in E }[/math].

Output: A matching [math]\displaystyle{ M }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ \sum_{e\in M'}w(e)\leq\sum_{e\in M}w(e) }[/math] for any other matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math].