Maximum-weight matching: Difference between revisions

From Algowiki
Jump to navigation Jump to search
No edit summary
Line 15: Line 15:
== Known algorithms ==
== Known algorithms ==


# The [[Hungarian method]] for [Basic graph definitions#Bipartite and k-partite graphs|bipartite graphs]]
# The [[Hungarian method]] for [[Basic graph definitions#Bipartite and k-partite graphs|bipartite graphs]]


== Remark ==
== Remark ==


The maximum-weight matching problem restricted to [[Basic graph definitions#Bipartite and k-partite graphs|bipartite graphs]] is usually called the '''assignment problem'''.
The maximum-weight matching problem restricted to [[Basic graph definitions#Bipartite and k-partite graphs|bipartite graphs]] is usually called the '''assignment problem'''.

Revision as of 18:02, 22 November 2014

Basic definitions

  1. Basic graph definitions
  2. Matchings in graphs

Definition

Input:

  1. An undirected graph [math]\displaystyle{ G=(V,E) }[/math].
  2. A real-valued weight [math]\displaystyle{ w(e) }[/math] for each edge [math]\displaystyle{ e\in E }[/math].

Output: A matching [math]\displaystyle{ M }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ \sum_{e\in M'}w(e)\leq\sum_{e\in M}w(e) }[/math] for any other matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math].

Known algorithms

  1. The Hungarian method for bipartite graphs

Remark

The maximum-weight matching problem restricted to bipartite graphs is usually called the assignment problem.