Maximum-weight matching: Difference between revisions

From Algowiki
Jump to navigation Jump to search
Line 8: Line 8:
'''Input:'''
'''Input:'''
# An undirected graph <math>G=(V,E)</math>.
# An undirected graph <math>G=(V,E)</math>.
# A real-valued '''weight''' <math>w(e)</math> for each edge <math>e\in E</math>.
# A real-valued '''weight''' <math>c(e)</math> for each edge <math>e\in E</math>.


'''Output:'''
'''Output:'''
A matching <math>M</math> in <math>G</math> such that <math>\sum_{e\in M'}w(e)\leq\sum_{e\in M}w(e)</math> for any other matching <math>M'</math> in <math>G</math>.
A matching <math>M</math> in <math>G</math> such that <math>\sum_{e\in M'}c(e)\leq\sum_{e\in M}c(e)</math> for any other matching <math>M'</math> in <math>G</math>.


== Known algorithms ==
== Known algorithms ==

Revision as of 18:12, 22 November 2014

Basic definitions

  1. Basic graph definitions
  2. Matchings in graphs

Definition

Input:

  1. An undirected graph [math]\displaystyle{ G=(V,E) }[/math].
  2. A real-valued weight [math]\displaystyle{ c(e) }[/math] for each edge [math]\displaystyle{ e\in E }[/math].

Output: A matching [math]\displaystyle{ M }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ \sum_{e\in M'}c(e)\leq\sum_{e\in M}c(e) }[/math] for any other matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math].

Known algorithms

  1. The Hungarian method for bipartite graphs

Remark

The maximum-weight matching problem restricted to bipartite graphs is usually called the assignment problem.