Dijkstra: Difference between revisions

From Algowiki
Jump to navigation Jump to search
No edit summary
Line 13: Line 13:


==== dhg ====
==== dhg ====
Dijstra's algorithm is a graph algortihm solving the single-source shortest-paths problem.
== Requirements ==
* directed Grpah ''G'' = (''V,E'')
* weight function ''w'' : ''E'' → ℜ


== Pseudocode ==  
== Pseudocode ==  
====DIJKSTRA(''G,w,s'')====


<code>
<code>
Line 28: Line 39:
</code>
</code>


====RELAX(''u,v,w'')====
<code>
<code>
  RELAX(''u,v,w'')
  RELAX(''u,v,w'')
Line 36: Line 48:


<code>
<code>
====INITIALIZE-SINGLE-SOURCE(''G,s'')====
  INITIALIZE-SINGLE-SOURCE(''G,s'')  
  INITIALIZE-SINGLE-SOURCE(''G,s'')  
  1 '''for''' each vertex ''v'' &isin; ''G.V''
  1 '''for''' each vertex ''v'' &isin; ''G.V''

Revision as of 16:33, 25 September 2014

Das is de Disjkstra


dhg

Dijstra's algorithm is a graph algortihm solving the single-source shortest-paths problem.

Requirements

  • directed Grpah G = (V,E)
  • weight function w : E → ℜ


Pseudocode

DIJKSTRA(G,w,s)

DIJKSTRA(G,w,s)
1 INITIALIZE-SINGLE-SOURCE(G,s) 
2      S = ∅
3      Q = G.V
4      while Q ≠ ∅
5            u = EXTRACT-MIN(Q)
6            S = S ∪ {u} 
7            for each vertex v ∈ G.Adj[u]
8                 RELAX(u,v,w)

RELAX(u,v,w)

RELAX(u,v,w)
1 if v.d > u.d + w(u,v)
2       v.d = u.d + w(u,v)
3       v.π = u

INITIALIZE-SINGLE-SOURCE(G,s)

INITIALIZE-SINGLE-SOURCE(G,s) 
1 for each vertex vG.V
2         v.d = ∞
3         v.π = NIL
4 s.d = 0