Binary search tree: remove node: Difference between revisions
Jump to navigation
Jump to search
Line 20: | Line 20: | ||
== Induction Basis == | == Induction Basis == | ||
'''Abstract view:''' If <math>p.left</math> is the immediate predecessor of '''''K''''', overwrite '''''K''''' by its immediate predecessor and terminate; otherwise, initialize <math>p'</math>. | |||
'''Implementation:''' | |||
# If <math>p.left.right = void</math>: | |||
## Set <math>p.key := p.left.key</math> | |||
## Set <math>p.left := p.left.left</math>. | |||
## Terminate the algorithm. | |||
#Otherwise, set <math>p' := p.left</math>. | |||
'''Proof:''' Obvious. | |||
== Induction Step == | == Induction Step == | ||
== Complexity == | == Complexity == |
Revision as of 21:31, 25 September 2014
General Information
Algorithmic problem: See the remark clause of Binary Search Tree; pointer p as defined there is the input.
Prerequisites: [math]\displaystyle{ p.left \neq void }[/math]
Type of algorithm: loop
Auxiliary data: A pointer [math]\displaystyle{ p' }[/math] of type "pointer to a binary search tree node".
Abstract View
Invariant:
- The immediate predecessor of K is in the range of [math]\displaystyle{ p' }[/math].
- It is [math]\displaystyle{ p'.right = void }[/math].
Variant: The pointer [math]\displaystyle{ p' }[/math] descends one level deeper to [math]\displaystyle{ p'.right }[/math].
Break condition: It is [math]\displaystyle{ p'.right.right = void }[/math].
Induction Basis
Abstract view: If [math]\displaystyle{ p.left }[/math] is the immediate predecessor of K, overwrite K by its immediate predecessor and terminate; otherwise, initialize [math]\displaystyle{ p' }[/math].
Implementation:
- If [math]\displaystyle{ p.left.right = void }[/math]:
- Set [math]\displaystyle{ p.key := p.left.key }[/math]
- Set [math]\displaystyle{ p.left := p.left.left }[/math].
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p' := p.left }[/math].
Proof: Obvious.