Binary search: Difference between revisions
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
== Abstract view == | == Abstract view == | ||
'''Invariant:''' | '''Invariant:''' For every recursive call: | ||
# The pointer <math>p</math> points to the sequence at position <math>k_i</math> | # The pointer <math>p</math> points to the sequence at position <math>k_i</math> | ||
#The key <math>\Kappa </math> is in the range of <math>[k_i-n/2^i, k_i +n/2^i]</math> | #The key <math>\Kappa </math> is in the range of <math>[k_i-n/2^i, k_i +n/2^i]</math> |
Revision as of 05:54, 27 April 2016
Binary search
Algorithmic problem: Finding an element in a sorted array
Type of algorithm: recursion
Abstract view
Invariant: For every recursive call:
- The pointer [math]\displaystyle{ p }[/math] points to the sequence at position [math]\displaystyle{ k_i }[/math]
- The key [math]\displaystyle{ \Kappa }[/math] is in the range of [math]\displaystyle{ [k_i-n/2^i, k_i +n/2^i] }[/math]
Variant: The pointer [math]\displaystyle{ p }[/math] is moved so the sequence item at the position (rounded) [math]\displaystyle{ (k_i+k_{i-1})/2 }[/math] with [math]\displaystyle{ k_0=0 if S[n/2]\lt \Kappa,k_0=n if S[n/2]\gt \Kappa }[/math]
Break condition: Either [math]\displaystyle{ S[k_i]=\Kappa }[/math] or, otherwise, [math]\displaystyle{ k_i=k_{i+1} with S[k_i]\neq \Kappa }[/math].
Induction basis
Abstract view: Set [math]\displaystyle{ p:= }[/math] n/2.
Implementation: Obvious.
Proof: Nothing to show.
Induction step
Abstract view:
If p points to a node but not with key K, p descends in the appropriate direction, left or right.
Implementation:
- If [math]\displaystyle{ p.key = K }[/math], terminate the algorithm and return true.
- Otherwise:
- If [math]\displaystyle{ K \lt p.key }[/math], set [math]\displaystyle{ p }[/math] to the sequence element [math]\displaystyle{ k_{i+1}=k_i-n/2^i }[/math].
- If [math]\displaystyle{ K \gt p.key }[/math], set [math]\displaystyle{ p }[/math]to the sequence element [math]\displaystyle{ k_{i+1}=k_i-n/2^i }[/math].
Correctnes: Obvious.
Complexity
Statement: Log(n)
Proff: Obvious.