Basic flow definitions: Difference between revisions

From Algowiki
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
== Residual network ==
== Residual network ==


Let <math>G=(V,A)</math be a directed graph , <math>\ell(a)</math> and <math>u(a)</math> and <math>f(a)\in[\ell(a)\ldots u(a)]</math>
Let <math>G=(V,A)</math> be a directed graph , <math>\ell(a)</math> and <math>u(a)</math> and <math>f(a)\in[\ell(a)\ldots u(a)]</math>


== Flow-augmenting path ==
== Flow-augmenting path ==

Revision as of 18:47, 12 October 2014

Residual network

Let [math]\displaystyle{ G=(V,A) }[/math] be a directed graph , [math]\displaystyle{ \ell(a) }[/math] and [math]\displaystyle{ u(a) }[/math] and [math]\displaystyle{ f(a)\in[\ell(a)\ldots u(a)] }[/math]

Flow-augmenting path

Let [math]\displaystyle{ G=(V,A)\lt /math be a directed graph , \lt math\gt \ell(a) }[/math] and [math]\displaystyle{ u(a) }[/math] and [math]\displaystyle{ f(a)\in[\ell(a)\ldots u(a)] }[/math]

Preflow

Pseudoflow

Valid distance labeling