Basic flow definitions: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 1: | Line 1: | ||
== Residual network == | == Residual network == | ||
Let <math>G=(V,A)</math be a directed graph , <math>\ell(a)</math> and <math>u(a)</math> and <math>f(a)\in[\ell(a)\ldots u(a)]</math> | Let <math>G=(V,A)</math> be a directed graph , <math>\ell(a)</math> and <math>u(a)</math> and <math>f(a)\in[\ell(a)\ldots u(a)]</math> | ||
== Flow-augmenting path == | == Flow-augmenting path == |
Revision as of 18:47, 12 October 2014
Residual network
Let [math]\displaystyle{ G=(V,A) }[/math] be a directed graph , [math]\displaystyle{ \ell(a) }[/math] and [math]\displaystyle{ u(a) }[/math] and [math]\displaystyle{ f(a)\in[\ell(a)\ldots u(a)] }[/math]
Flow-augmenting path
Let [math]\displaystyle{ G=(V,A)\lt /math be a directed graph , \lt math\gt \ell(a) }[/math] and [math]\displaystyle{ u(a) }[/math] and [math]\displaystyle{ f(a)\in[\ell(a)\ldots u(a)] }[/math]