Successive shortest paths: Difference between revisions

From Algowiki
Jump to navigation Jump to search
No edit summary
Line 4: Line 4:
# The capacity constraints are fulfilled, that is, <math>0\leq f(a)\leq u(a)</math> for all <math>a\in A</math>.
# The capacity constraints are fulfilled, that is, <math>0\leq f(a)\leq u(a)</math> for all <math>a\in A</math>.
# The '''balance discrepancy''' of each node <math>v\in V</math> is '''underestimating''', that is,
# The '''balance discrepancy''' of each node <math>v\in V</math> is '''underestimating''', that is,
## If <math>b(v)>0</math>, then <math>\sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)\leq b(v)</math>.
## If <math>b(v)<0</math>, then <math>\sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)\geq b(v)</math>.
## If <math>b(v)=0</math>, then <math>\sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)=b(v)</math>.


'''Variant:'''
'''Variant:'''
The '''balance discrepancy''' strictly decreases, that is, the value
The '''total balance discrepancy''' strictly decreases, that is, the value
:<math>\sum_{v\in V}\left|\sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)-b(v)\right|</math>.
:<math>\sum_{v\in V}\left|\sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)-b(v)\right|</math>.


Line 12: Line 16:


'''Abstract view:'''
'''Abstract view:'''
Start with an arbitrary value <math>f(a)\in[0\ldots u(a)
Start with the zero flow.
 
'''Proof:'''
Obvious.

Revision as of 08:49, 23 October 2014

Abstract view

Invariant:

  1. The capacity constraints are fulfilled, that is, [math]\displaystyle{ 0\leq f(a)\leq u(a) }[/math] for all [math]\displaystyle{ a\in A }[/math].
  2. The balance discrepancy of each node [math]\displaystyle{ v\in V }[/math] is underestimating, that is,
    1. If [math]\displaystyle{ b(v)\gt 0 }[/math], then [math]\displaystyle{ \sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)\leq b(v) }[/math].
    2. If [math]\displaystyle{ b(v)\lt 0 }[/math], then [math]\displaystyle{ \sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)\geq b(v) }[/math].
    3. If [math]\displaystyle{ b(v)=0 }[/math], then [math]\displaystyle{ \sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)=b(v) }[/math].


Variant: The total balance discrepancy strictly decreases, that is, the value

[math]\displaystyle{ \sum_{v\in V}\left|\sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)-b(v)\right| }[/math].

Induction basis:

Abstract view: Start with the zero flow.

Proof: Obvious.