Matchings in graphs: Difference between revisions
No edit summary |
|||
Line 10: | Line 10: | ||
'''Output:''' | '''Output:''' | ||
A matching <math>M</math> in <math>G</math> such that <math>|M'|\leq|M|</math> for any other matching <math>M'</math> in <math>G</math>. | A matching <math>M</math> in <math>G</math> such that <math>|M'|\leq|M|</math> for any other matching <math>M'</math> in <math>G</math>. | ||
'''Known algorithms:''' | |||
# [[Maximum matching by Edmonds]] | |||
== Maximum weighted matching == | == Maximum weighted matching == |
Revision as of 18:10, 24 October 2014
Definition
Let [math]\displaystyle{ G=(V,E) }[/math] be an undirected graph. A matching in [math]\displaystyle{ G }[/math] is a set [math]\displaystyle{ M }[/math] of edges such that no two edges in [math]\displaystyle{ M }[/math] are incident.
Cardinality-maximal matching
Input: An undirected graph [math]\displaystyle{ G=(V,E) }[/math].
Output: A matching [math]\displaystyle{ M }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ |M'|\leq|M| }[/math] for any other matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math].
Known algorithms:
Maximum weighted matching
Input:
- An undirected graph [math]\displaystyle{ G=(V,E) }[/math].
- A weight [math]\displaystyle{ w(e) }[/math] for each edge [math]\displaystyle{ e\in E }[/math].
Output: A matching [math]\displaystyle{ M }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ \sum_{e\in M'}w(e)\leq\sum_{e\in M}w(e) }[/math] for any other matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math].