Maximum-weight matching: Difference between revisions

From Algowiki
Jump to navigation Jump to search
Line 20: Line 20:


# The maximum-weight matching problem restricted to [[Basic graph definitions#Bipartite and k-partite graphs|bipartite graphs]] is usually called the '''assignment problem'''.
# The maximum-weight matching problem restricted to [[Basic graph definitions#Bipartite and k-partite graphs|bipartite graphs]] is usually called the '''assignment problem'''.
# If the graph is bipartite, <math>G=(V_1\dot\cup V_2,E)</math>, we may assume <math>|V_1|=|V_2|</math> without loss of generality (just add the missing nodes to the smaller  node set). Then the [[Matchings in graphs|perfect matching]] of ''minimum'' weight can be found as follows:
# If the graph is bipartite, <math>G=(V_1\dot\cup V_2,E)</math> and <math>|V_1|=|V_2|</math>, the [[Matchings in graphs|perfect matching]] of ''minimum'' weight can be found as follows:
## Let <math>C:=\max\{c(e)|e\in E\}</math>.
## Let <math>C:=\max\{c(e)|e\in E\}</math>.
## For each edge <math>e\in E</math>, set <math>c'(e):=C-c(e)</math>.
## For each edge <math>e\in E</math>, set <math>c'(e):=C-c(e)</math>.
## Find a ''maximum''-weight matching with respect to <math>c'</math>.
## Find a ''maximum''-weight matching with respect to <math>c'</math>.

Revision as of 18:37, 22 November 2014

Basic definitions

  1. Basic graph definitions
  2. Matchings in graphs

Definition

Input:

  1. An undirected graph [math]\displaystyle{ G=(V,E) }[/math].
  2. A real-valued weight [math]\displaystyle{ c(e) }[/math] for each edge [math]\displaystyle{ e\in E }[/math].

Output: A matching [math]\displaystyle{ M }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ \sum_{e\in M'}c(e)\leq\sum_{e\in M}c(e) }[/math] for any other matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math].

Known algorithms

  1. The Hungarian method for bipartite graphs

Remarks

  1. The maximum-weight matching problem restricted to bipartite graphs is usually called the assignment problem.
  2. If the graph is bipartite, [math]\displaystyle{ G=(V_1\dot\cup V_2,E) }[/math] and [math]\displaystyle{ |V_1|=|V_2| }[/math], the perfect matching of minimum weight can be found as follows:
    1. Let [math]\displaystyle{ C:=\max\{c(e)|e\in E\} }[/math].
    2. For each edge [math]\displaystyle{ e\in E }[/math], set [math]\displaystyle{ c'(e):=C-c(e) }[/math].
    3. Find a maximum-weight matching with respect to [math]\displaystyle{ c' }[/math].