Successive shortest paths with reduced costs: Difference between revisions

From Algowiki
Jump to navigation Jump to search
Line 1: Line 1:
== Abstract view ==
== Abstract view ==
'''Auxiliary data:'''
For each node <math>v\in V</math>, there is a real number <math>\pi(v)</math>


'''Invariant:'''
'''Invariant:'''
# All points of the invariant of the [[Successive shortest paths|successive shortest paths]] algorithm.
# All points of the invariant of the [[Successive shortest paths|successive shortest paths]] algorithm.
# For each node <math>v\in V</math>, there is a real number <math>\pi(v)</math> such that, for each arc <math>a=(v,w)\in A_f</math>, the '''reduced cost''' <math>c^\pi(a):=c(a)-\pi(v)+\pi(w)</math> is nonnegative.
# For each arc <math>a=(v,w)\in A_f</math>, the '''reduced cost''' <math>c^\pi(a):=c(a)-\pi(v)+\pi(w)</math> is nonnegative.


'''Definition:'''
'''Definition:'''

Revision as of 15:49, 4 December 2014

Abstract view

Auxiliary data: For each node [math]\displaystyle{ v\in V }[/math], there is a real number [math]\displaystyle{ \pi(v) }[/math]

Invariant:

  1. All points of the invariant of the successive shortest paths algorithm.
  2. For each arc [math]\displaystyle{ a=(v,w)\in A_f }[/math], the reduced cost [math]\displaystyle{ c^\pi(a):=c(a)-\pi(v)+\pi(w) }[/math] is nonnegative.

Definition: Such a node labeling [math]\displaystyle{ \pi }[/math] is called consistent with [math]\displaystyle{ f }[/math] in the following.

Induction basis

Abstract view: Start with the zero flow [math]\displaystyle{ f }[/math] and with the zero node labeling [math]\displaystyle{ \pi }[/math].

Proof: Obviously, [math]\displaystyle{ \pi\equiv 0 }[/math] is consistent with [math]\displaystyle{ f\equiv 0 }[/math].

Induction step

Abstract view:

  1. In the residual network of [math]\displaystyle{ f }[/math], find a shortest path [math]\displaystyle{ p }[/math] from the set of nodes [math]\displaystyle{ v\in V }[/math] with [math]\displaystyle{ I_f(v)\lt 0 }[/math] to the set of nodes [math]\displaystyle{ w\in V }[/math] with [math]\displaystyle{ I_f(v)\gt 0 }[/math] (cf. Successive shortest paths for the terminology).
  2. Augment the current flow along this path by the minimum residual capacity of all arcs on this path.
  3. Update the node labeling [math]\displaystyle{ \pi }[/math] such that it is consistent with the new flow.

Implementation of step 3:

  1. Let [math]\displaystyle{ s }[/math] denote the start node of [math]\displaystyle{ p }[/math].
  2. For all nodes [math]\displaystyle{ v\in }[/math]:
    1. Compute the shortest path length [math]\displaystyle{ \delta(v) }[/math] from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ v }[/math].
    2. Set [math]\displaystyle{ \pi(v):=\pi(v)-\delta(v) }[/math].

Proof: The only non-obvious property is consistency of the node labeling computed in the implementation of step 3.

Complexity

Statement: The asymptotic complexity is in [math]\displaystyle{ \mathcal{O}(C\cdot n\cdot T(n)) }[/math], where