Successive shortest paths with reduced costs: Difference between revisions
Line 22: | Line 22: | ||
'''Abstract view:''' | '''Abstract view:''' | ||
The induction step is a variation and extension of the [[Successive shortest paths#Induction step|induction step]] of the [[Successive shortest paths#successive shortest paths algorithm]]. The variation is that <math>c</math> is replaced by <math>c^\pi</math>. Due to the invariant, it is always <math>c^\pi\geq 0</math>. Therefore, an efficient algorithm such as [[Dijkstra|Dijkstra's]] may be applied. The extension is that, after each augmentation of the flow, the reduced cost values must be updated to maintain consistency. | |||
'''Implementation of | '''Implementation of the update of the reduced cost values:''' | ||
# | # Add a new node <math>s</math> to <math>V</math> and, for every node <math>v\in V</math>, an arc <math>(s,v)</math> to <math>A</math> with a capacity at least as large as all original capacities and with zero cost. | ||
# Run a [[Single source shortest paths|single-source shortest-paths algorithm]] with start node <math>s</math> and withe the current reduced cost values <math>c^\pi</math> as arc length. | |||
# For all original nodes <math>v\in V</math>, set <math>\pi(v):=\pi(v)-\delta(v)</math>, where <math>\delta(v)</math> is the distance of <math>v</math> computed in step 2. | |||
# | # Remove <math>s</math> and all of its incident arcs from <math>G</math>. | ||
'''Remark:''' | |||
The start node <math>s</math> could be an original node of <math>V</math>. However, if some nodes are not reachable from <math>s</math> in the [[Basic flow definitions#Residual network|residual network]], arcs with large capacity and zero cost have to be inserted in <math>A</math> until all nodes are reachable from <math>s</math>. | |||
'''Proof:''' | '''Proof:''' | ||
Points 1 and 3 of the invariant of the [[Successive shortest paths|successive shortest paths algorithm]] are obviously maintained. | |||
For point 2 of that invariant, | |||
== Complexity == | == Complexity == |
Revision as of 13:45, 5 December 2014
Abstract view
Auxiliary data: For each node [math]\displaystyle{ v\in V }[/math], there is a real number [math]\displaystyle{ \pi(v) }[/math].
Invariant:
- All points of the invariant of the successive shortest paths algorithm.
- For each arc [math]\displaystyle{ a=(v,w)\in A_f }[/math], the reduced cost [math]\displaystyle{ c^\pi(a):=c(a)-\pi(v)+\pi(w) }[/math] is nonnegative.
Definition: Such a node labeling [math]\displaystyle{ \pi }[/math] is called consistent with [math]\displaystyle{ f }[/math] in the following.
Induction basis
Abstract view: Start with the zero flow [math]\displaystyle{ f }[/math] and with the zero node labeling [math]\displaystyle{ \pi }[/math].
Proof: The assumption that all cost values are nonnegative implies that [math]\displaystyle{ \pi\equiv 0 }[/math] is consistent with [math]\displaystyle{ f\equiv 0 }[/math].
Induction step
Abstract view: The induction step is a variation and extension of the induction step of the Successive shortest paths#successive shortest paths algorithm. The variation is that [math]\displaystyle{ c }[/math] is replaced by [math]\displaystyle{ c^\pi }[/math]. Due to the invariant, it is always [math]\displaystyle{ c^\pi\geq 0 }[/math]. Therefore, an efficient algorithm such as Dijkstra's may be applied. The extension is that, after each augmentation of the flow, the reduced cost values must be updated to maintain consistency.
Implementation of the update of the reduced cost values:
- Add a new node [math]\displaystyle{ s }[/math] to [math]\displaystyle{ V }[/math] and, for every node [math]\displaystyle{ v\in V }[/math], an arc [math]\displaystyle{ (s,v) }[/math] to [math]\displaystyle{ A }[/math] with a capacity at least as large as all original capacities and with zero cost.
- Run a single-source shortest-paths algorithm with start node [math]\displaystyle{ s }[/math] and withe the current reduced cost values [math]\displaystyle{ c^\pi }[/math] as arc length.
- For all original nodes [math]\displaystyle{ v\in V }[/math], set [math]\displaystyle{ \pi(v):=\pi(v)-\delta(v) }[/math], where [math]\displaystyle{ \delta(v) }[/math] is the distance of [math]\displaystyle{ v }[/math] computed in step 2.
- Remove [math]\displaystyle{ s }[/math] and all of its incident arcs from [math]\displaystyle{ G }[/math].
Remark: The start node [math]\displaystyle{ s }[/math] could be an original node of [math]\displaystyle{ V }[/math]. However, if some nodes are not reachable from [math]\displaystyle{ s }[/math] in the residual network, arcs with large capacity and zero cost have to be inserted in [math]\displaystyle{ A }[/math] until all nodes are reachable from [math]\displaystyle{ s }[/math].
Proof: Points 1 and 3 of the invariant of the successive shortest paths algorithm are obviously maintained.
For point 2 of that invariant,
Complexity
Statement: The asymptotic complexity is in [math]\displaystyle{ \mathcal{O}(C\cdot n\cdot T(n)) }[/math], where