Binary search tree: find: Difference between revisions
Line 25: | Line 25: | ||
== Induction basis == | == Induction basis == | ||
'''Abstract view:''' Set | '''Abstract view:''' Set <math>p:=</math> root. | ||
'''Implementation:''' Obvious | '''Implementation:''' Obvious |
Revision as of 09:32, 17 May 2015
General Information
Algorithmic Problem: Sorted Sequence:find
Type of algorithm: loop
Auxiliary data: A pointer [math]\displaystyle{ p }[/math] of type "pointer to binary search tree node of type [math]\displaystyle{ \mathcal{K} }[/math]."
Abstract view
Invariant: After [math]\displaystyle{ i\geq 0 }[/math] Iterations.
- The pointer [math]\displaystyle{ p }[/math] points to a tree node [math]\displaystyle{ v }[/math] on height level [math]\displaystyle{ i }[/math] (or is void).
- The key [math]\displaystyle{ K }[/math] is in the range of [math]\displaystyle{ v }[/math].
Variant: [math]\displaystyle{ i }[/math] is increased by 1.
Break condition: Either it is [math]\displaystyle{ p = }[/math]void or, otherwise, it is[math]\displaystyle{ p }[/math].key [math]\displaystyle{ = K }[/math].
Induction basis
Abstract view: Set [math]\displaystyle{ p:= }[/math] root.
Implementation: Obvious
Proof: Nothing to show
Induction step
Abstract view: If p points to a node but not with key K, p descends in the appropriate direction, left or right.
Implementation:
- If [math]\displaystyle{ p = void }[/math], terminate the algorithm and return false.
- Otherwise, if [math]\displaystyle{ p.key = K }[/math], terminate the algorithm and return true.
- Otherwise:
- If [math]\displaystyle{ K \lt p.key }[/math], set [math]\displaystyle{ p := left }[/math].
- If [math]\displaystyle{ K \gt p.key }[/math], set [math]\displaystyle{ p := right }[/math].
Correctnes: Obvious.
Complexity
Statement: Linear in the length of the sequence in the worst case (more precisely, linear in the height of the tree).
Proof: Obvious.
Pseudocode
TREE-SEARCH (x, k)
- if x= NIL or k = key[x]
- then return x
- if k < key[x]
- then return TREE-SEARCH(left[x], k)
- else return TREE-SEARCH(right[x], k)