Binary search tree: remove node: Difference between revisions
Line 31: | Line 31: | ||
'''Implementation:''' | '''Implementation:''' | ||
# If <math>p.left.right = void | # If <math>p</math>.left.right = void: | ||
## Set <math>p.key := p.left.key | ## Set <math>p</math>.key := p.left.key. | ||
## Set <math>p.left := p.left.left | ## Set <math>p</math>.left := p.left.left. | ||
## Terminate the algorithm. | ## Terminate the algorithm. | ||
#Otherwise, set <math>p' := p.left | #Otherwise, set <math>p'</math> := p.left. | ||
'''Proof:''' Obvious. | '''Proof:''' Obvious. |
Revision as of 14:18, 18 May 2015
General Information
Algorithmic problem: See the remark clause of Binary Search Tree; pointer [math]\displaystyle{ p }[/math] as defined there is the input.
Prerequisites: [math]\displaystyle{ p }[/math].left [math]\displaystyle{ \neq }[/math] void.
Type of algorithm: loop
Auxiliary data: A pointer [math]\displaystyle{ p' }[/math] of type "pointer to a binary search tree node of type [math]\displaystyle{ \mathcal{K} }[/math]."
Abstract View
Invariant:
- The immediate predecessor of K is in the range of [math]\displaystyle{ p' }[/math].
- It is [math]\displaystyle{ p' }[/math].right = void.
Variant: The pointer [math]\displaystyle{ p' }[/math] descends one level deeper, namely to [math]\displaystyle{ p }[/math]'.right.
Break condition: It is [math]\displaystyle{ p' }[/math].right.right = void.
Induction Basis
Abstract view: If [math]\displaystyle{ p.left }[/math] is the immediate predecessor of K, overwrite K by its immediate predecessor and terminate; otherwise, initialize [math]\displaystyle{ p' }[/math].
Implementation:
- If [math]\displaystyle{ p }[/math].left.right = void:
- Set [math]\displaystyle{ p }[/math].key := p.left.key.
- Set [math]\displaystyle{ p }[/math].left := p.left.left.
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p' }[/math] := p.left.
Proof: Obvious.
Induction Step
Abstract view: If [math]\displaystyle{ p'.right }[/math] is the immediate predecessor of K, overwrite K by its immediate predecessor and terminate; otherwise, let p' descend one level deeper.
Implementation:
- If [math]\displaystyle{ p'.right.right = void }[/math]:
- Set [math]\displaystyle{ p.key := p'.right.key }[/math].
- Set [math]\displaystyle{ p'.right := p'.right.left }[/math].
- Terminate the algorithm.
Correctness: Obvoius.
Complexity
Statement: The complexity is in [math]\displaystyle{ \mathcal{O}(T\cdot h)\subseteq\mathcal{O}(T\cdot n) }[/math] in the worst case, where [math]\displaystyle{ n }[/math] is the length of the sequence, [math]\displaystyle{ h }[/math] the height of the tree, and [math]\displaystyle{ T }[/math] the complexity of the comparison.
Proof: Obvious.