Binary search tree: remove node: Difference between revisions

From Algowiki
Jump to navigation Jump to search
Line 20: Line 20:


== Induction Basis ==
== Induction Basis ==
'''Abstract view:''' If <math>p.left</math> is the immediate predecessor of '''''K''''', overwrite '''''K''''' by its immediate predecessor and terminate; otherwise, initialize <math>p'</math>.
'''Implementation:'''
# If <math>p.left.right = void</math>:
## Set <math>p.key := p.left.key</math>
## Set <math>p.left := p.left.left</math>.
## Terminate the algorithm.
#Otherwise, set <math>p' := p.left</math>.
'''Proof:''' Obvious.


== Induction Step ==
== Induction Step ==


== Complexity ==
== Complexity ==

Revision as of 21:31, 25 September 2014


General Information

Algorithmic problem: See the remark clause of Binary Search Tree; pointer p as defined there is the input.

Prerequisites: [math]\displaystyle{ p.left \neq void }[/math]

Type of algorithm: loop

Auxiliary data: A pointer [math]\displaystyle{ p' }[/math] of type "pointer to a binary search tree node".

Abstract View

Invariant:

  1. The immediate predecessor of K is in the range of [math]\displaystyle{ p' }[/math].
  2. It is [math]\displaystyle{ p'.right = void }[/math].

Variant: The pointer [math]\displaystyle{ p' }[/math] descends one level deeper to [math]\displaystyle{ p'.right }[/math].

Break condition: It is [math]\displaystyle{ p'.right.right = void }[/math].

Induction Basis

Abstract view: If [math]\displaystyle{ p.left }[/math] is the immediate predecessor of K, overwrite K by its immediate predecessor and terminate; otherwise, initialize [math]\displaystyle{ p' }[/math].

Implementation:

  1. If [math]\displaystyle{ p.left.right = void }[/math]:
    1. Set [math]\displaystyle{ p.key := p.left.key }[/math]
    2. Set [math]\displaystyle{ p.left := p.left.left }[/math].
    3. Terminate the algorithm.
  2. Otherwise, set [math]\displaystyle{ p' := p.left }[/math].

Proof: Obvious.

Induction Step

Complexity